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ABSTRACT 

This research addresses the problems experienced by the autonomous mobile robot, 

Yamabico-11, with its ultrasonic sonar system. It explains the basics of acoustic 

theory as related to Yamabico-11 and explains the sources of limitations imposed 

on Yamabico-11 by the physical nature of the problem. This paper documents the 

basic characteristics of the sonar hardware and examines causes of sonar range 

errors. Finally, this research leads to improvements of the current sonar system 

to provide better directional coverage through a new sonar configuration. 
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I. INTRODUCTION 

A. SPATIAL REASONING PHILOSOPHY 

Good spatial reasoning is critical to the success of any mobile robotics 

project; it allows a robot to interpret what it "sees" and to perform intelligent 

motions.   Spatial reasoning requires the robot to create and maintain a cognitive 

map, or knowledge structure, of its world. There are two main schemes 

employed by robotics projects to represent this cognitive map: occupancy arrays 

and constructive solid geometry. 

The implementation of an occupancy array representation in 2-D is similar 

to the implementation of a graphic picture. Grids, similar to the pixels of a 

computer monitor, divide the world. The labels, occupied, empty or unknown, 

similar to the red, green, blue (RGB) designations used in graphics, give the 

status of each grid Additionally, each grid has an uncertainty factor between 0 

and 1, similar to the 0 - 255 value assigned to the RGB colors. This uncertainty 

factor arises due to incomplete sensor data and/or partially occupied grids. 

Humans can visualize occupancy arrays easily; the occupancy arrays easily 

transform into a graphic picture. However, they do have some drawbacks. If an 

object moves, the uncertainty of its position increases dramatically. 

Furthermore, occupancy arrays require a significant amount of space, depending 

on the granularity of the representation. For example, suppose the robot 

requires 2-D knowledge of its world to within one centimeter and its world is a 

five meter square box. This world is represented by a 1000 x 1000 array 

containing one million grids; Each element of the array would need to maintain 

information on both the status and uncertainty of the grid.(Davis, 1990, pp. 264- 

270)   Many robotics projects, such as the Neptune, Terregator and Uranus 

robots at Carnegie-Mellon University, use occupancy arrays to describe their 

robot's world (Elfes, 1987, p. 255). 
The other common implementation of the cognitive map uses 

Constructive Solid Geometry (CSG). CSG represents complex objects as a 

combination of fundamental shapes. The fundamental shapes used depends on 

the domain of the world. Each shape has its own, or local, coordinate system 



and this coordinate system has a position relative to the world, or global, 

coordinate system. The description of an object consists of the appropriate 

dimensions and the location and orientation of the local coordinate system for 

each fundamental shape forming the object. This works fine for describing a 

known world, but the method breaks down when an unknown obstacle is 

encountered. The robot is unable to determine neither the dimensions nor the 

location of the local coordinate system of each fundamental shape needed to 

compose the object; the robot only knows information about the visible boundary 

of the object and can not determine to what shape this boundary belongs.(Davis, 

1990, pp. 270-273) 

B. SENSORS 

Intelligent management of on board sensors is critical to successful robot 

navigation. Some of the basic types of sensors used in robotics include sonars, 

Charge-Coupled Device (CCD) cameras, laser range finders and tactile sensors. 

Each sensor type has its own set of strengths and limitations which needs to be 

considered when designing a sensor suite. The sensor suite should use 

complementary sensors and should only use those sensors which are 
appropriate for the particular application. Correlating data from multiple sensors 

is an extremely difficult problem that many organizations and universities, 

including this one, are trying to solve. The problem is complicated even further 

when different types of sensors provide the data. However, the benefits of this 

sensor fusion are tremendous. 
Ultrasonic sonars probably are one of the most widely used sensors due 

to their low cost and ease of implementation.   They provide good range 

resolution, but the bearing information is limited. Ultrasonic sonars are excellent 

at detecting the presence of an object, but cannot determine object size without 

the maneuvering of their platform. 
On the other hand, CCD cameras can provide boundary information about 

an object. However, image processing is expensive in both dollar cost, Central 

Processing Unit (CPU) time, disk storage and power requirements. The lack of 

depth perception is a major disadvantage which can be overcome by using 

multiple CCD cameras, reference images, or other similar strategies. 



Laser range finders use the same basic principles as ultrasonic sonars; 

they measure the time of flight to determine distance. However, since laser 

range finders use the speed of light (3 x 108 m/s), their response time is much 

better than that of ultrasonic sonars which use the speed of sound (343 m/s). 

They are not used on smaller robotics projects because they have a higher price 

tag and require more power. 
Tactile sensors are used mainly with manipulators, but have found uses 

with mobile robots. They have been used on the feet of walking robots to 

facilitate foot placement and on the periphery of wheeled robots, similar to curb 

feelers installed on some cars. 

C. YAMABICO-11 PHILOSOPHY 

Yamabico-11 is a research robot at the Naval Postgraduate School whose 

purpose is to implement and validate new theories in robotics, including motion 

control and spatial reasoning. Consequently, its configuration, both hardware 

and software, is continually evolving. 
The Yamabico-11 project uses a method similar to CSG to describe its 

world; the world and the objects in it are depicted by polygons. Known objects 

are fitted to polygons located within the inverted polygon representing 

Yamabico-11's world. As Yamabico-11 moves within its world, it uses a least- 

squares fitting algorithm to fit its positional sonar readings to line segments. 

Yamabico-11 matches these line segments to its known world; if no known object 

corresponds to the sonar data, the line segments are stored as a new object. 

This method has advantages over occupancy arrays and CSG because it 

requires less storage space and does not need to know information about the 

location and orientation of the local coordinate system of objects. Fitting sonar 

data to line segments reduces the impact of partial and/or erroneous data. 

Objects, both known and unknown, are represented by the global position of 

each vertex of the polygon or endpoints of the line segment. 

Yamabico-11 uses and array of twelve ultrasonic sonars as its main 

sensor system. Since Yamabico-11 operates in a controlled environment, it 

does not need a sophisticated, long-range sensor system. Since Yamabico-11 

also serves as a teaching tool, it includes a CCD camera to provide a means for 



image processing research. Since image processing is a CPU intensive 

operation, the CCD camera has not been incorporated as an integral part of the 

sensor suite. Future plans for Yamabico-11 development include the integration 

of the CCD camera. 
The quality of the data received depends on the sensor system 

characteristics. This research work examines the quality of the data produced 

by sonars and shows how to use this data for intelligent obstacle avoidance. 



II. PROBLEM STATEMENT AND APPROACH 

A. PURPOSE 

The purpose of this thesis work was to: 

1. Determine the acoustic characteristics of the current ultrasonic sensors 

and the effects of the current sensor configuration on the capabilities and 

limitations of Yamabico-11. It will explain the origin of the observations made so 

far and will help to develop corrections to the sensor data processing to adjust 

for the physical phenomena. 

2. Improve the capability of Yamabico-11 to navigate autonomously 

around unknown obstacles. 

B. APPROACH 

1. Acoustic Characteristics 

The approach followed during this research work was to: 

a. Determine the theory of the physical phenomena related to the 

ultrasonic sensors. 

b. Test and verify the theoretical predictions in the laboratory setting. 

c. Make recommendations for improvements. 

d. Implement improvements. 

e. Test the improvements using Yamabico-11 as the test bed. 

2. Robot Navigation 

Intelligent robot navigation requires interfacing the sensor system(s) and 

the path planning module to derive a workable algorithm for obstacle avoidance. 

This task was accomplished by: 



a. Developing a dynamic function to determine a safe path for avoiding 

an obstacle, assuming either the vertices of the object are known or 

the width can be determined. 

b. Testing the ability of Yamabico-11 to avoid obstacles autonomously 

using this function in a variety of scenarios. 



III. YAMABICO-11 

A. HISTORY 

Yamabico-11 is an autonomous mobile robot powered by two 12-volt 

batteries and driven on two wheels by DC motors. These motors drive and 

steer the wheels while four shock absorbing caster wheels balance the robot. It 

uses twelve 40 kHz ultrasonic sensors to sense its environment.   Recently, its 

master processor was upgraded from the Motorola MC68020 microprocessor to 

the SPARC4 microprocessor. This upgrade to the SPARC4 microprocessor 

expanded Yamabico-11's memory and changed the development environment. 

The high-level Model-based Mobile-robot Language (MML) software, written in 

ANSI C, is compiled using a "Makefile" and then downloaded to Yamabico-11. 

An onboard laptop console (Macintosh 145 Powerbook) provides real-time 

command level communication between the user and the robot. 

The Motorola microprocessor on Yamabico-11 uses MML Version 10 

(MML 10) and requires compilation using the "gravy6" server in the Computer 

Science Department at the Naval Postgraduate School.   MML 10 consists of a 

kernel and a user program. The kernel contains the compiled code for the 

robot's application software. The user program uses the MML functions to 

control the robot. Once compiled, these programs are downloaded to the robot 

via an RS-232 link at a baud rate of 19,200. Typing the command "lo=dluk" at 

the prompt on the laptop downloads both the kernel and the user program to 

Yamabico-11; typing "lo=dlu" downloads just the user program. Once 

downloaded, the user types "g 304000" to run the user program. 

The SPARC4 microprocessor on Yamabico-11 uses MML Version 11 

(MML 11). Compilation of MML 11 uses the GNU 'C Compiler available on the 

SPARC workstations and downloading uses an Ethernet cable connected to the 

"libra" server in the Computer Science Department at the Naval Postgraduate 

School. The "Makefile" in MML 11 compiles the kernel files and the user files 

into a single executable file called "user" and copies this file into the 

"SPARC4/target" directory in the "yamabico" account. The "libra" server 

automatically checks this directory every minute to see if the user program has 

changed and updates its files accordingly. This step is required to ensure the 



security and integrity of the "libra" server. To load the executable program, the 

user types "bootp" at the prompt on the laptop. If the user enters "bootp" at the 

laptop prompt before the "libra" server has updated its files, the new compiled 

program will not be available yet, so the old compiled program will be loaded. 

Therefore, it is important that the user wait at least one minute after compiling 

the program before downloading the program to Yamabico-11. Once loaded, the 

user types "run" to execute the user program. 
Navy Lieutenant Scott Book developed MML 11 in March 1994. MML 10 

became cumbersome with the addition of new functions. MML 10 relied heavily 

upon numerous global variables and did not adhere to standard software 

engineering practices. Although MML 11 allows Yamabico-11 to use the 

SPÄRC4 microprocessor, the main thrust of Lieutenant Book's work was the 

restructuring of the MML to eliminate global variables and secondly to develop 

guidelines for future programming. Lieutenant Book successfully implemented 

and tested the motion control functions in MML 11. In September 1994, Navy 

Lieutenant Commander Frank Kelbe converted the sonar functions from MML 10 

to MML 11. 

B. SONAR SYSTEM 

1. Hardware System 

Yamabico-11 's sonar system has been evolving since 1980.   The original 

design consisted of an array of twelve ultrasonic transmitter/receiver pairs, 

hereafter referred to as sonar pairs, mounted around the periphery of the robot 

as per Figure 1, approximately a foot from the floor. The self-contained sonar 

system ran on a VME motherboard and interfaced with the Yamabico-11's 

Central Processing Unit (CPU) via the VME bus. 
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a. Sensor Configuration 

In the original design, the twelve ultrasonic sonar pairs were 

divided into three logic control groups having each of their sensors located at 90 

degree angles from each other: group 0 consists of pairs 0, 2, 5 and 7; group 1 

consists of pairs 1, 3, 4 and 6; and group 2 consists of pairs 8, 9, 10 and 11. 

This grouping allowed four ultrasonic sonar pairs to operate simultaneously 

without interference.   (Sherfey, 1991, pp. 10-11) Additionally, the sonar pairs 

0 
* 

/A   A.   S 
4 

5 ^             Forward               ^ 

X.  ^ 
1 

Figure 1 
Ultrasonic Sensor Pair Location 

were physically grouped in order to distribute the electrical load over the driver 

boards evenly. Sonar pairs 0, 2, 8 and 11 were on sonar driver board 1; sonar 

pairs 4, 6, 7 and 5 run off of sonar driver board 2 while sonar pairs 1, 3, 9 and 10 

work from sonar driver board 3.   Figure 2 shows the relationship between the 

different sonar pairs, the sonar motherboard and Yamabico-11's CPU. 
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Figure 2 
Sonar Hardware Architecture 

b. Clock Counter 

A clock counter data register computed the distance to a target. 

The first 12 bits of the data register were reserved for the range data. The data 

register kept track of the number of clock cycles expired between the transmit 

and receive pulses. A clock cycle occurred every 6 microseconds. For TP2*, 

the clock counter was enabled one cycle, or 25 microseconds, after the transmit 

pulse begins; for TP1*, the clock counter was enabled one-and-a-half cycles, or 

37.5 microseconds, after the transmit pulse begins. When a return signal 

exceeded a set threshold at the receiver, the last value of the clock was copied 

into the appropriate data register and the clock counter continued until ranging 

was completed for all sonars in the group. 
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c. Sonar Range Calculation 

The minimum range was based on the receiver being disabled 

during the transmit pulse.   This prevented the receiver from being triggered by 

crosstalk from the transmitted signal. The pulse was transmitted for 0.5 

milliseconds; at 343 meters per second, sound traveled a total of 17.15 

centimeters in this time, but since this represented the two-way travel distance, 

the minimum theoretical range was one-half of this number or 8.575 centimeters. 

However, additional time was needed to accommodate circuitry switching and 

settling; therefore, in practice, firmware set the minimum range at 9.6 

centimeters (Sherfey, 1991, p. 12). 

The maximum range was a function of the hardware design. The 

maximum number that could be represented by 12 bits was 212 -1 = 4095. At 6 

microseconds per clock tick, this equated to (ö.OxlCT6) x (4095) = 0.02457 

seconds. In 24.57 milliseconds, a sound wave could travel 8.428 meters. Since 

the sound wave must travel both out and back, the maximum one-way distance 

was one-half of this distance, or 4.214 meters. Therefore, due to system 

configuration constraints, Yamabico-11's sensors had an operating range of 9.6 

centimeters to 4.214 meters. (Sherfey, 1991, pp. 11-13) 

d. Sonar Driver Board 

Within each logical group, two sensors were driven by one driver 

board while the other two sensors were driven by another driver board. The 

driver board produced a 0.5 millisecond transmit signal consisting of 20 cycles of 

a 40 kHz, 4.5 V peak-to-peak square wave. The driver board produced two 

signals, TP1* and TP2*. TP2* lagged TP1* by 180 degrees, allowing the driver 

board to power only one of the sensors at a time. The sonar control board 

interrupted Yamabico-11's central processing unit only when data was available 

from the sonar array. 
The received signal was considerably weaker than the transmitted 

pulse so it was sent through a two-stage amplification circuit and then to a 

74LS14 Schmitt Trigger which, given a variable input voltage, produced a 

constant output voltage signal. However, the Schmitt Trigger required a 

11 



minimum of 1.4 Volts to operate (Michiue, 1994, p. 32).   The first stage of the 

amplification circuit yielded a voltage gain of 40 dB and the second stage a 

12.87 dB gain for a total gain of 52.87 dB or 440 (Michiue, 1994, p. 23). 

Therefore, a minimum 6 mV peak-to-peak signal at the receiver was required to 

recognize the return signal. 
The actual transmitted pulse was a packet of 20 individual pulses 

of equal amplitude, separated by 25 microseconds. Because of the finite 

bandwidth of the receiver transducer and preamplifier, the output amplitude of 

the receiver circuitry increased linearly to reach a maximum according to the 

equation 

y =     max $t 

5x10 ,-4 
(Eq.3-1) 

where t is the time, V is amplitude of the received voltage and Vmax is the 

maximum voltage reached. The output reached a maximum at t = 0.5 

milliseconds and then fell off according to the equation 

V = Vmaxe ,-t/T (Eq. 3-2) 

where V is the voltage at the receiver, Vmax is the maximum voltage reached, 

T = 0.5 milliseconds and t is the time. Figure 3 gives a representation of the two 

pulse packets. The Schmitt Trigger fired once the amplitude of the received 

signal after amplification, V, reached 1.4 Volts. The time that this took varied 
because the maximum received signal strength, Vmax, was a function of both 

the distance to and the reflectance of the object ensonified. 

e. Accuracy 

The clock counter - distance conversion algorithm should account 

for the hardware side effects. At room temperature (20°C) the speed of sound in 

air is 343 m/s. Using this value, the delay in starting the clock meant that the 

true range was about 0.43 or 0.64 centimeters longer, depending on which 

signal, TP1* or TP2°, was used to drive the transmitter. Since the last clock 

counter value was copied to the data register upon the receipt of a return signal, 

the value could be as much as one clock cycle, or 6 microseconds, off, causing 

12 



Pulse Packets 

Transmit Receive 

Figure 3 
Representative Pulse Packets 

the true range to be longer yet by up to another 0.1029 centimeters. Normally, 
one assumed that the actual object was ensonified by the leading edge of the 
transmit pulse. However, when using a detection threshold and the Schmitt 
Trigger, detection could occur anywhere within the received pulse. If the 
maximum amplitude of the received pulse was not detected, it was unlikely that 
any of the remaining received pulses would be detected. The detection could be 
delayed for up to 0.5 milliseconds, the transmit pulse width. This detection delay 
equated to an addition of up to 8.575 centimeters to the true range. Therefore, 
the worst-case accuracy of the sonar was the sum of the delays or about 9.1 
centimeters. 

f. Upgrades 

Although the maximum theoretical range was set at 4.214 meters 
by the register size, in practice, the maximum achievable range was much less 
due to the sensitivity of the old sensors and circuitry. The front sensors were 

13 



upgraded in 1993 in hopes of overcoming the detection problems at long ranges. 

The new sensors are the Nicera T40-16 transmitter and the Nicera R40-16 

receiver. The physical diameter of these sensors was 16.2 millimeters and they 

had an internal aperture diameter of 7.0 millimeters. 

However, these sensors still were being driven by a 5 volt peak-to- 

peak supply voltage which produced an output voltage of about 4 volts peak-to- 

peak. At long ranges, the received signal often fell below the 6 mV required to 

fire the Schmitt Trigger, making detection nearly impossible. Consequently, in 

June 1994, the supply voltage to the transmitters was increased from 5 to 12 

volts peak-to-peak to improve the capability of the new sensor system to detect 

obstacles consistently at long ranges. However, at this increased supply 

voltage, spillover became a problem.   The amplitude of the spillover detected by 

the receiver was halved within the first millisecond after transmission and settled 

out after 6 milliseconds. To minimize the transmitter spillover effects, the 

receiver circuitry was redesigned to decrease the sensitivity during the first 

millisecond after transmission.   Figure 4 shows this new sonar driver board 

configuration. (Michiue, 1994, pp. 10-13) 

2= Software System 

Yamabico-11's sensors can provide information about the surrounding 

environment about which it is unaware or can verify conditions that are already 

known. Obstacle detection and localization generally refers to gathering 

information about unknown objects. Sonar returns from obstacles are unplanned 

events. Alternatively, the sonar can be pre-programmed to acquire sonar 

returns based on the robot's knowledge of the world provided by its cognitive 

map and the robot's desired path. Ideally, it would continually look everywhere 

to determine its location within the world, but power requirements and signal 

interference patterns prevent this. (Yamabico manual, pp. 22-23). 

The sonar system is used to navigate within Yamabico-11 !s known world. 

The sensors can return either the raw range data measured from the sonar pair 

face, or return the x - y coordinates of the sonar return in the robot's global 

coordinate system. Figure 5 shows the relation between the robot's local 
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Figure 4 
Sonar Driver Board Configuration 

coordinate system, represented by the jrand y axes, and its global coordinate 

system denoted by the X and Y axes. 

Polygonal vertices in the global coordinate system describe the 

boundaries of the world and known objects. Sonar returns are depicted in 

Yamabico-11's local coordinate system, then transformed into the global 

coordinates.   Once transformed, a linear fit to the sonar return allows a 

comparison with the objects in the known world to determine and/or verify the 

location of Yamabico-11. Additionally, the sonar system detects objects in the 

robot's path, but localization of these objects has not yet been accomplished. 

The user had to tell the robot how and when to use its sonar through the 

user program developed in the MML. The user could enable/disable each of the 

twelve sonar pairs individually and could indicate the desired type of sonar 
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Figure 5 
Global and Local Coordinate Systems Relationship 

return data (raw range information or globa! coordinates) for each sonar pair. 

Additionally, the user could instruct Yamabico-11 to perform linear fitting of the 

sonar data. In 1993, Navy Lieutenant Patrick Byrne restructured the sonar 

system software kernel files to make them more modularized and user-friendly. 

in MML10, the mnemonics were set up to make it easier for the user to 

operate the sonars. Table 1 lists these mnemonics. For example, a user 

program using these mnemonics may have contained the following ANSI C code 

fragment using MMI10: 

enable(FRONTR); 

enable (FRONTL); 

distance = sonar(FRONTR); 

point = global(FRONTL); 

disable(FRONTR); 

/Turn on sonar 3*/ 

/Turn on sonar 0*/ 
/*Get raw range data from sonar 3*/ 

fGet global coordinates of data from 

sonar 0"/ 

/Turn off sonar 37 

16 



Mnemonic Sonar Group 

FRONTL 0 0 

FRONTR 3 1 

LEFTF 4 1 

LEFTB 5 0 

RIGHTF 7 0 

RIGHTB 6 1 

BACKL 1 1 

BACKR 2 0 

BACKLEFT 8 2 

BACKRIGHT 9 2 

FRONTRIGHT 10 2 

FRONTLEFT 11 2 

Table 1 
Old Sonar Mnemonics 

In general, the functionality of the sonar control code remained the same 

in MML 11. However, function names differed slightly to adhere to the new 

function naming convention. The new convention eliminated the use of the 

underscore character (_) to separate words within a function name. Instead 

MML 11 used a combination of upper- and lower-case letters. Initially, sonar 

mnemonics also remained the same. For example, under MML 11, user program 

code may have contained the following: 

EnableSonar(FRONTR); 

DisableSonar(FRONTL); 

LogSonar Data(FRONTR); 

/* Turn on sonar 3 */ 

/* Turn off sonar 0 */ 

/* Begin logging data from sonar 3 */ 

In addition, Lieutenant Commander Kelbe converted the sonar data logging 

functions in MML 11 to reuse code from the motion data logging functions 

previously implemented. 
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3. Acoustic Characteristics 

The angular beam pattern of an ultrasonic sensor is a critical parameter. 

Sherfey reported that the beam width of the major lobe was determined by using ' 

the accepted far-field approximation of 

(Eq. 3-3) 0=1.22 — 
D 

where Xis the wavelength, D is the diameter of the uniform circular aperture and 

9 is the beam width in radians. Sherfey reported that for a 40 kHz signal and an 

ultrasonic sensor diameter of 1.5 centimeters, the acoustic wave length was 8.5 

millimeters and produced a theoretical beam width of 40°. In hopes of reducing 

this beam width, the original design placed cones around the transducers as 

shown in Figure 6. (Sherfey, 1991, p. 51) From this geometry, Sherfey reported 

that the effective beam width at a distance of one meter was 2.6°. (Sherfey, p. 

53.) 
Additionally, Byrne conducted experiments in 1993 to investigated the 

data returned from the sonar system.   He determined that Yamabico-11 could 

map out a straight wall accurately while performing either translational or 

rotational movement, but that the data returned from corners or round objects 

was sketchy and erroneous. (Byrne, pp. 29-43) In particular,   Byrne observed 

that Yamabico-11 could not map either a concave or a convex 90 degree angle 

accurately. 
Yamabico-11 plots concave right angle walls as a series of short askew 

line segments rather than one continuous line segment. The linear-fitting 

technique breaks down because of sides lobes which cause improper distances 

to be measured. Additionally, Yamabico-11 plots a line of sonar returns tangent 

to the vertex of the concave right angle. For the convex right angle, Yamabico- 

11 fails to get usabl© sonar returns. These problems will be explained in 

Chapter IV and are not a failure of Yamabico-11, but a limitation imposed by the 

physical nature of the problem. 
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IV. ACOUSTIC THEORY 

A. BEAM WIDTH 

The term "beam width" is used to describe the pressure field radiated by 

an energy source. It refers to the extremity of the major lobe of the radiation 

pattern. Sound levels received off-axis are weaker than those received on the 

centerline of the beam.   Beam width can refer to one of several angles; the user 

must know which angle is being referenced. The ratio, 

^ (Eq.4-1) 

where P(6) refers to the off-axis pressure and Pax refers to the centerline or 

axial pressure, is used to define the beam width angle. The common angles 

used are the half-power beam width, the half-amplitude beam width, and the 

nodal beam width. The half-power beam width, also referred to as -3 dB beam 

width, is the angle at which this ratio equals 0.707; the half-amplitude, or -6 dB, 

beam width occurs when the ratio is 0.5; and the nodal beam width takes place 

when the ratio goes to zero. Figure 7 shows the relationship of these different 

beam widths for an acoustically simple source with a circular aperture. 

Therefore, one must indicate at which point a given beam width was taken. 

Determining the beam patterns of acoustic sources is greatly simplified if 

they can be treated as simple sources. "A simple source is a closed surface, 

vibrating with arbitrary velocity distribution, but of such a size that all dimensions 

are much smaller than the wavelength of the emitted sound (Kinsler, 1982, p. 

164)." This is not the case for the sensors on Yamabico-11. The wavelength of 

the sound and the diameter of the transducer are almost equivalent. Hence, the 

transducer is a complex source. 

Equation 3-3 represents the Fraunhofer diffraction of light through a 

circular aperture and represents the half angle from the central peak to the first 

node. It assumes that the angle subtended is small, using the small angle 

approximation of 0. If these angles are not small, then the correct expression 

sin 0=1.22— 
D 

(Eq. 4-2) 

21 



Figure 7 
Common Beam Widths 

must be used. Equation 3-3 is an excellent approximation in optics because the 

wavelength of light, X, is usually much smaller than the diameter of the aperture 

(A « D).   It also assumes that the observation point is at a sufficient distance 

from the circular aperture that the light can be approximated by plane waves. 

The diffraction pattern produced is a central disk, known as the Airy disk, 

surrounded by concentric rings. The half angle subtended by the Airy disk is the 

angle 9 in Equation 3-3.   This is the half-angle of the first node. 

However, in acoustics, X is often of the same order of magnitude as D. 

Therefore, the angles are not necessarily small and substituting 9 for sin0\s an 

invalid approximation; hence, Equation 4-2 is the correct equation.   The sensors 

under investigation have an aperture diameter, D = 7.0 mm and acoustic 

wavelength, X = 8.575 mm. Using the optical approximation, Equation 3-3 

indicates that a node occurs at about 85.6 degrees.   Equation 4-2 gives a non- 

real solution of s//70= 1.4945, indicating that there is no nodal surface. 
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The initial assumption is that the source acts like a uniform circular piston 

mounted in a rigid baffle. The beam pattern function for this source is given by 

'2JX {ka sin 6)' 
P(ö) = PM kasin 6 

(Eq. 4-3> 

where k is the wave number, a is the radius of the source aperture, J1 is the 

first-order Bessel function and #is the angle measured relative to the piston 

axis. The wave number k - 2jtf/c where f is the frequency and c is the speed of 

sound. Figure 8 plots the functional behavior of 2J1(x)/x. The sound pressure 

goes to zero when the plot in Figure 8 crosses the x-axis. This occurs when 

to sin 0m=jXm (Eq.4-4) 

where 9m is off-axis angle of the node, and;„ = 3.83 is the value where the J1 

Bessel function goes to zero. For a frequency of f = 40 kHz, speed of sound in 

air of c = 343 m/s and aperture radius a = 3.5 mm, the term, ka, equals 2.565 

and the first zero of the Bessel Function occurs at sinO-, = 1.4945. Solving for d1 

gives a non-real solution, indicating that no nodal surface occurs within the 180 

degree span. This result agrees with Olson who stated that a nodal surface will 

first appear for plane circular piston sources when the ratio of aperture diameter 

to wavelength of sound, D/A, is greater than or equal to 1.25 (Olson, 1947, p. 

39). For the transducer under investigation, D/X = 0.816; therefore, no nodal 

surface was expected. 
The sound pressure ratio from Equation 4-1 is the same as the ratio 

2 Jx {x) I x; from Figure 8, the ratio 2 J, {x) I x equals 0.5 when x * 2.2. Since x = 

ka sine, this ratio occurs when 0« 59 degrees, which once again agrees with 

Olson. The full beam width is twice this angle or 118 degrees. Since the 

technical data supplied with the transducers lists the half-amplitude beam width 

as 50 degrees, the assumption that the source alone acts like a plane piston is 

invalid. 
A more probable assumption is that the source acts like a spherical 

source and the casing acts as a tube to produce a plane wave at the output of 

the sensor casing, imitating a circular piston source with radius equal to that of 

the case opening. The analytical solution to this problem is very complex due to 

the diffraction of the beam around the edges of the tube. In an infinite baffle, the 
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Figure 8 
Behavior of the Function 2J{(x)/x 

sound energy is reflected back into the beam; no energy can escape to the 

backside of the radiator. With the circular piston source in the end of a tube, the 

energy almost uniformly spreads 360° for a small ka. As the value of ka 
increases, the pattern produced has a strong, wide, irregularly-shaped beam in 

front of the radiator and a smaller, weaker, and still irregular beam pointing 

backward from the radiator. 
Since the actual situation is difficult to solve analytically, the infinite baffle 

assumption was used with new aperture diameter equal to the inside diameter of 

the casing, 13.0 mm.   Using 13.0 mm as the aperture diameter and Equation 4- 

2 yields a nodal half-angle of 

(Eq. 4-5) 0=siir' 1.22— =53.6 degrees 

Using the new aperture radius of 6.5 mm, the half-amplitude half-angle becomes 

6- 27.51 degrees, making the half-amplitude full beam width, 20- 55 degrees. 

This value is only 10% greater than that supplied in the technical data. Figure 9 

plots this theoretical beam pattern. 
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Figure 9 
Theoretical Beam Pattern of Transducer with a = 6.5 mm and X = 8.575 mm 

B. HORNS 

The main purpose of a horn is to increase the acoustical output of a 

piston-like transducer at low frequencies; increased directionality is a by- 

product. The horn acts as an acoustical transformer; it matches the impedance 

of air to that of the piston. At low frequencies, the acoustical impedance at the 

throat of the horn is greater than that which would act on a piston of equal area 

vibrating in an infinite baffle, resulting in a greater acoustical output. At high 

frequencies, the horn has little effect. At high frequencies the transmitted beam 

is much narrower; the horn does not increase the acoustical impedance. 

If the wavelength of sound is greater than the diameter of the horn mouth, 

then the directional characteristics will be determined by the mouth; otherwise, it 

is the flare of the horn which determines its directional characteristics. At high 

frequencies, the wavelength is small so flare is important. The most effective 

horn is one in which the rate of flare increases from throat to mouth. 
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Hyperbolas, catenaries and exponential functions have all been used to 

determine the flare rate. The most commonly used horn employs the 

exponential function 

Sx = S0e
m (Eq. 4-6) 

where Sx is the cross-sectional area at any given position x, S0 is the cross- 

sectional area of the throat given by S0= m2 where r is the physical radius of the 

transducer element, and m is the flare constant. (Kinsler, 1982, p.373) 

However, the horns used on Yamabico-11 are of the simpler conical shape 

where 

Sx = S0x
2 (Eq. 4-7) 

The size of the conical horn is important in determining the beam 

characteristics it will produce. At low frequencies, where the wavelength of 

sound is greater than the diameter of the horn mouth, the pattern is the same as 

that produced by a piston of the same size as the mouth of the horn. The 

acoustic waves exiting the mouth are essentially planar. At higher frequencies, 

the pattern becomes narrower until it crosses over a threshold, at which point the 

exiting acoustic waves are no longer planar. At even higher frequencies, the 

circular conical horn acts the same as a spherical surface source whose radius 

is equal to the distance as measured along the side of the horn from the 

imaginary apex to the mouth opening.   The exiting acoustic waves are now 

spherical. As the frequency continues to increase, the pattern begins to broaden 

out again. (Olson, pp. 42-43) 
Yamabico=11 uses two different sized conical cones with the ultrasonic 

transducers mounted inside. Both cones have a radius of 9.25 mm at the point 

where the transducers are mounted; this is the throat radius. The small cone on 

the transmitter has an angle of opening, 0a, of 23.7°, with a mouth radius of 

13.25 millimeters or about 1.56A, and overall length of 63.20 millimeters or about 

7.4 wavelengths from the transducer. The larger cone on the receiver has a 0a 

of 28°, a mouth radius of 23.75 millimeters which is about 2.8A and overall length 

of 95.26 millimeters or about 11.2 wavelengths from the transducer. 
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As has been stated previously, the acoustic waves exiting the bare 

transducer are planar; therefore, the bare transducer is already producing the 

desired beam pattern. The addition of a cone introduces impedance 

mismatches at both the throat and mouth of the cone. These mismatches cause 

a reflected wave back towards the transducer, setting up interference. Hence, 

the cones do not enhance the acoustical properties of the transducers. 

C. REFLECTION 

Using only a sonar system, a robot is unable to map convex and concave 

right angles accurately. The explanation for this can be found in basic physics 

principles. Detecting a convex right angle is virtually impossible given the 

configuration in Figure 10. The transmitted sound is reflected off the wall, away 

Acoustic Signal /N 

> 
» 

Robot's path 
Figure 10 

Convex Right Angle Detection and Mapping 

from the robot. The angle of reflection, 0r, equals the angle of incidence, 9r In 

Figure 5, Bl - 45°; therefore, the signal will be reflected off of the wall at 45°. 

When the robot is directly abreast of the corner as in Figure 10, some of the 

signal will be reflected from the very tip of the corner, but this reflected signal is 

very weak. Only a very small percentage, less than one percent, of the 

transmitted beam impinges on the corner tip in a manner so it may reflect back 
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to the robot. Since the percentage of signal returned is so low, it is then lost in 

the circuit noise. 
The concave right angle is easier to detect although the physical nature 

of the problem makes it difficult to map the concave right angle accurately. The 

distances measured in the vicinity of the angle are longer than they actually are. 

Figure 11 shows a line segment extracted from the sonar return in the vicinity of 

the concave right angle. As expected, the line segment is tangent to the vertex. 

Acoustic Signal 

> 
> 

Robot's path 

Legend:      Distances as mapped 
by Yamabico-11 

Figure 11 
Concave Right Angle Detection and Mapping 

A concave right angle acts as a retro-reflector; the reflected signal is parallel to 

the transmitted signal. The path length (time) measured by the sonar system is 

longer than the actual distance. Figure 12 blows up the corner and shows what 

is happening. The distance plotted is based on the total path length vice the 

actual distance to the wall. The distance plotted is 

x = -(dl + d2+d3) 
2 

(Eq. 4-8) 
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As long as the receiver is within the reflected beam, it will measure this distance. 

The size of the beam when it reaches the wall depends on the beam width and 

distance to the wall. The beam radius is 

r = dtm0 (Eq. 4-9) 

where d is the distance to the wall and 9 is the half-amplitude beam width. Using 

the half-amplitude beam width of 27.51° calculated for the sensors used on 

Yamabico-11 in Section A above, the diameter of the reflected signal is about 

equal to the distance to the wall. For all practical purposes, the receiver will be 

within the reflected beam. 

d1 

Transmitter □ 

d3 

Receiver 

Legend:     Distances as mapped 
by Yamabico-11 

Figure 12 
Reflection Plotted by Yamabico-11 

Although the convex right angle can not be mapped given the situation depicted 

in Figure 10, the concave right angle can be mapped accurately under the 

situation in Figure 11. Although Figure 12 shows 91 = 92 = 45°, the same line 
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would occur for 91 * 62. However, the corrections needed rely on the fact that 

the robot knows that it is encountering a concave right angle. This type of 

knowledge would only exist if the robot already has a map of its world and is just 

verifying its position within that map. The corrections could not be applied to 

sonar returns resulting from the detection of an unknown object. 
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V. ANECHOIC CHAMBER EXPERIMENTS 

A. BEAM PATTERNS 

The first experiment conducted was to verify the beam pattern of the 

Nicera transducer elements. Figure 13 shows the experiment setup used to 

verify the beam width. The technical data indicates that this sensor operates at 

a frequency of 40 kHz, has a -6dB half-amplitude beam width of 50°, and can 
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Beam Pattern Experiment Setup 
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handle inputs up to 20 Vrms.   The transmitter and receiver were mounted in a 

manner to ensure that they were operating in the far-field.   Figure 14 shows the 

actual setup in the anechoic chamber used for this first experiment. 

Aneehosc Chamber 

Bare 
Transmitter 

1.99 meters 

Transducer 
Height off Deck: 85 cm 

Bare 
Receiver 

c 
^ 

Figure 14 
Experiment 1 Setup in the Anechoic Chamber 

The voltage used to conduct these experiments was 4.5 Volts peak-to-peak as 

this was the effective voltage used by Yamabico-11. This preliminary 

experiment was necessary to validate the experimental procedures which would 

be used later on. Ideally, the experiment would have been conducted using an 

omnidirectional transmitter and receiver to measure the response of the subject 

receiver and transmitter, respectively. However, an omnidirectional receiver or 

transmitter which operated at  40 kHz was not available.   Therefore, the 

experiment would have to be conducted using an "identical" transmitter and 

receiver. 
Figure 15 shows the linear data extracted during this experiment. Figure 16 

depicts this information in polar form. The theory presented in Chapter IV had 

predicted that the node would occur at 52.9°.   Experimentally, the node was 

measured at about 58°; a difference of less than 10%.   The -6dB value for the 

half-amplitude comes from the equation 
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Bare Transmitter/Receiver Beam Pattern 
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20 log 
PjO) 

= -6 (Eq.5-1) 
v « 

where the quantity P(9)/Pax(8) = °-5>the half-amplitude. At half amplitude, 9' 

was 29° ± 1°. A theoretical G' of 27.51° calculated in Chapter iV. Therefore the 

-6dB beam width was 2 x 9' or 58° which is 5.4% greater than the theoretical 

half-amplitude beam width and 16% more than that reported in the technical 

data accompanying the sensors. All comparisons hence forth will use the half- 

amplitude as the threshold of an acceptable return. The actual data extracted 

during the experiment is located in Appendix A. 

Next, the effects of the transmitter and receiver cones were examined. 

The transmitter and cone combination was attached to the rotator and the bare 

receiver was placed approximately two meters away as per Figure 17. 
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Figure 17 
Experiment 2 Setup in the Anechoic Chamber 

The results plotted in Figures 18a and 18b indicate that the small transmitter 

cone was detrimental to the signal. Although the beam width of the major lobe 

was reduced, adding the small transmitter cone created side lobes. 

34 



-I—I—1—I—I—f 

50        100       150 200      250 
Angle (degrees) 

300      350 

Figure 18a 
Linear Plot of Beam Pattern Produced by Small Transmitter Cone 

& 
3 
"5 
> 

330 

Figure 18b 
Polar Plot of Beam Pattern Produced by Small Transmitter Cone 
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These side lobes are undesirable because they can lead to false readings. 

Appendix A contains the analog graphs obtained during this experiment. 

The experiment was then reversed; the bare transmitter was fixed at a 

distance of about two meters and the receiver and cone combination was rotated 

as per Figure 19. 
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Figure 19 
Experiment 3 Setup in Anechoic Chamber 

Figures 20a and 20b shows the affects of the larger cone on the receiver. 

As before, the reduction in the major lobe beam width came at the expense of 

more side lobes. The analog graphs recorded during the experiment are 

contained in Appendix A. 

B. DETECTION CHARACTERISTICS OF SONAR PAIR 

Sherfey concluded that the current sonar configuration was sensitive to 

the orientation of the reflecting surface. He stated that the sonars had to be 

within a few degrees of perpendicular to the surface in order to get a return, 

thereby giving good bearing resolution. (Sherfey, 1991, p. 53) To investigate the 

characteristics of the sonar pair, a wall was built in the anechoic chamber. This 
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Figure 20a 
Linear Plot of Beam Pattern Produced by Large Receiver Cone 

Figure 20b 
Polar Plot of Beam Pattern Produced by Large Receiver Cone 
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wall was not a perfect reflector; however, any sound energy that was transmitted 

through the wall material or absorbed by the wall material could be ignored since 

the experiment was concerned with relative, vice absolute, measurements of 

amplitude and the sound loss was a constant.   The wall was placed within the 

far-field, but close enough to the sensor pairs to allow almost the entire 

transmitted beam to ensonify the wall.   The series of experiments tested both 

the current coned sonar configuration and for the bare sonar configuration. For 

both configurations, the experiments collected data with the sonar pair in both 

the horizontal and vertical positions and rotated the sonar pair in both the 

clockwise and counter-clockwise directions. Neither the sensor orientation 

plane nor rotation direction affected the outcome.   Figures 21 a and 21 b show 

the experimental setup and the polar graph of the received signal for the current 

cone configuration. Figures 22a and 22b show the experimental setup and the 

polar graph of the received signal for the bare transducer configuration. 
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Figure 21a 
Experiment 4 Setup in the Anechoic Chamber 
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Figure 21b 
Cone Configuration Angular Sensitivity 

Anechoic Chamber 

& 

Transmitter 

Receiver 

80 cm 

Transducer 

Height off Deck; 79.5 cm 

-> 

w 
A 
L 
L 

Wall Height: 124 cm 

Figure 22a 
Experiment 5 Setup in the Anechoic Chamber 
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Figure 22b 
Bare Transducer Angular Sensitivity 

As expected, in both cases, the beam pattern produced resulted from the 

multiplication of the individual transmitter and receiver patterns. Sensor 

orientation, horizontal vs. vertical, did not affect the resultant pattern; however, 

the cones had a dramatic affect. Using the half-amplitude beam width for 

comparison, the current cone configuration requires that the sensor pair be 

within about 5° of normal in order to detect an object.   If a bare sonar pair is 

used, a usable return up to 25° off normal is possible, as can be seen in Figure 

22b. The actual analog data recorded during these experiments are contained 

in Appendix A. 
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VI. YAMABICO-11 EXPERIMENTS 

A. DISTANCE MEASUREMENTS 

1. MML10 

Since MML 11 was still under development when this research began, 

MML 10 and the Motorola microprocessor were used to verify the sonar 

system's distance calculation using both the old, coned sonar pair configuration 

and the new, bare sonar pair configuration. For these experiments, a sonar pair 

without cones replaced the front left sonar pair, Sonar 0, on Yamabico-11. The 

bare sonar pair mounted its transmitter and receiver flush, keeping the 

separation distance as before at 45 millimeters.   The 5th floor of Spanagel Hall 

at the Naval Postgraduate School served as the experimental laboratory. Marks 

on the floor indicated distances from the wall; these marks occurred at 10 

centimeter increments up to one meter, then at 50 centimeter increments 

thereafter up to 400 centimeters, then at 410, 415 and 420 centimeters. These 

marks had an accuracy of ± 0.1 centimeters. Despite great care, aligning 

Yamabico-11 on the marks introduced another ±0.1 centimeter error. 

Positioning Yamabico-11's sonar beam perpendicular to the wall introduced an 

error which depended on the distance from the wall; at 400 centimeters, being 2 

degrees off of perpendicular introduced a +0.24 centimeter error. Using both the 

new bare sonar pair configuration, Sonar 0, and the old coned sonar pair 

configuration, Sonar 3, the experiments recorded the distances measured by the 

sonar system. Each experimental run used the average of twenty-one readings. 

Comparison of the averaged raw range data points and the actual marked 

distance produced a difference, called "Delta," calculated by subtracting the 

distance determined by the sonar from the actual marked distance. 

Figures 23 and 24 show the results of these experiments using the 

original circuitry. The slopes of the best fitting line to the data are within less 

than 0.5% of each other and the y-intercepts are within less than 4% of each 

other. There was less error in the distances as measured by Sonar 0; the 

standard error for Sonar 0 was 0.52 centimeters whereas Sonar 3 had a 

standard error of 0.77 centimeters. In both cases, zero error occurred at 
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Error in Bare Sonar Pair Distance Measurement Using Old Circuitry 
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Figure 24 
Error in Coned Sonar Pair Distance Measurement Using Old Circuitry 

Equation of "Best Fit" Line: Y = 0.016653 X - 3.38523 
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approximately half the maximum distance. Although Sonar 3 was able to get a 

return at 4.053 meters, it failed to get a return at 4.153 meters. Sonar 0 failed to 

get a return at distances beyond 4 meters. The theoretical maximum range in 

both cases was 4.214 meters. Based on this information, it appeared that the 

sensor configurations had no affect on the effectiveness of the current distance 

calculation algorithm and that neither configuration was able to achieve the 

maximum theoretical range even under the ideal circumstances of this 

experiment. 
Subsequently, similar experiments took data measurements at 50 

centimeter increments using the new circuitry designed by Michiue. Figures 25 

and 26 show the results of these experiments. With the new circuitry, the slope 

of the best fitting line to the data increased while the y-intercept remained about 

the same. But most importantly, with the new circuitry, both sonars were able to 

get consistent returns at over 4 meters.   These experiments showed that the 

new circuit design had increased the range for expected returns. However, 

these experiments also demonstrated the inaccuracy of the current distance 

calculation algorithm. 
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Figure 25 
Error in Bare Sonar Pair Distance Measurement Using New Circuitry 

Equation of "Best Fit" Line: Y = 0.020333 X - 3.07433 
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Distance Error Coned Sonar Pair (New Circuit) 
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Figure 26 
Error in Coned Sonar Pair Distance Measurement Using New Circuitry 

Equation of "Best Fit" Line: Y= 0.028235 X - 3.16069 

Ideally, the best fitting line to the data should have zero slope and fall on 

the x-axis. Investigation revealed that the slope and offset in the data results 

from hardware timing constraints. The function ,,serve_sonar" contained in the 

file "sonarcard.c" in MML 10 calculates the distance measured by the sonars. 

To determine the distance, a register records the number of clock ticks between 

the transmission of the pulse and the reception of the return pulse. The function 

reads this number from the register and divides it by ten, calling this the raw 

range. However, the distance traveled is 

d = Pe (Eq.6-1) 

where t is the time of one clock cycle and c is the nominal speed of sound in air. 

In 6 microseconds, sound travels 0.2058 centimeters at 343 m/s. Therefore, for 

two-way travel, the linear distance represented by one clock tick is one-half this 
value or 0.1029 centimeters vice 1/10 centimeter as previously coded. 
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2. MML 11 

Implementation of the sonar functions into MML 11 completed 

concurrently with the above experiments in September 1994. Therefore, 

implementation of the correct clock-distance conversion factor occurred in MML 

11 in the file "sonar.c" under the function "SonarSysControl." All subsequent 

experimentation used MML 11 and the SPARC4 microprocessor. 

Although it seemed like a minor point, dividing the number of clock ticks 

by ten versus multiplying them by 0.1029 greatly affected the distance error. 

The previous experiments were repeated using the new clock-distance 

conversion factor; Figures 27 and 28 plot the results. In both cases, the slope 

went from positive to negative. Since "Delta" is the actual measured distance 

minus the sonar distance, this means that the sonar system is recording a longer 

distance which is consistent with the received pulse shape limitations discussed 

in Chapter III. 

Distance Error of Bare Sonar Pair using MML 11 and 
Clock-Distance Conversion Factor of 0.1029 
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Figure 27 
Bare Sonar Pair Distance Error 

(Clock-Distance Conversion Factor of 0.1029) 
Equation of "Best Fit" Line: Y = - 0.01214 X - 1.817 
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Distance Error of Coned Sonar Pair using MML 11 and 
Clock-Distance Conversion Factor of 0.1029 
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Figure 28 
Coned Sonar Pair Distance Error 

(Clock-Distance Conversion Factor of 0.1029) 
Equation of "Best Fit" Line: Y = -0.00815 X - 2.771 

There are both static and dynamic causes of the error. The static causes 

related to the dock counter are minor; the main cause of error is dynamic and 

related to the strength of the reflected signal and the firing of the Schmitt 

Trigger. As previously stated, the strength of the received signal is a function of 

both the distance to and the reflectance of an object. 

Additional experiments examined the amount of error introduced by both 

distance and object composition. Adjustment of the oscilloscope to show the 

individual cycles of the received signal and the firing of the Schmitt Trigger while 

the sonar pinged continually allowed counting of the number of cycles received 

before the Schmitt Trigger fired. For the bare sonar pair, Sonar 0, it took three 

cycles at 50 centimeters before the Schmitt Trigger fired; at 400 centimeters, it 

took about 13 cycles. For Sonar 3, the coned sonar pair, it took two cycles at 50 

centimeters and eight cycles at 400 centimeters. Between these ranges, the 

number of cycles needed to fire the Schmitt Trigger rose linearly. Each cycle 

caused the sonar range to be about 0.43 centimeters greater than the actual 

distance. At longer distances, the number of cycles needed to fire the Schmitt 
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Trigger varied. The number recorded represented the average observed over a 

period of a couple of minutes. 

To examine the affect of object composition, Yamabico-11 moved slowly 

towards an object, stopping when the sonar range fell below 150 centimeters. 

Recording the actual distance from the various objects to the front of the stopped 

Yamabico-11 enabled a comparison of objects with different material 

composition. Although the value of actual measurement was not important, the 

difference between the measurements was significant. Table 2 lists some of 

these distances. Since the point at which the Schmitt Trigger fires varies, it is 

impossible to develop a software algorithm to calculate the distance accurately 

using the circuitry of Figure 4. 

OBJECT 
ENSONIFIED 

DISTANCE 
(± 0.5 cm) 

Cardboard Box 137.0 

Carpeted Room Divider 139.5 

Foam Rubber 130.0 

Plastic Trashcan 143.5 

Wall 140.0 

Table 2 
Sonar Distance Variations Based on Material Composition 

B. MULTIPATH INTERFERENCE 

The anechoic chamber experiments showed that the bare sonar pair 

produced a wide beam pattern whereas the coned sonar pair produced a narrow 

beam with side lobes. Therefore, the next testing configuration placed the bare 

sonar pair, Sonar 0, above the coned sonar pair, Sonar 3, at a height of 

approximately 45.5 centimeters from the floor on robot centerline. This would 

allow usage of both wide and narrow beam sensors. Additionally, the front 

corner sonars, Sonar 10 and Sonar 11, became bare sonar pairs.   Repeating 

the previously described distance experiments for both the bare and coned 

sonar pairs, Sonar 0 and Sonar 3 respectively, revealed problems. The coned 
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sonar pair performed consistently, but at approximately 3 meters, the return 

signal disappeared for bare sonar pair. Although both the corner sonars, Sonar 

10 and Sonar 11, had the same bare sonar pair configuration, their return 

signals were consistent. The only difference between the three bare sonar pairs 

was mounting height. The corner sonars were mounted at approximately 36.5 

centimeters from the floor. 
Although the bare sonar pair provided a significant increase in obstacle 

detection capability, it was susceptible to multipath interference.   Figure 29 

shows the multipath phenomena. If the path length difference, 2d-D, in Figure 

29 is equal to an odd number of half-wavelengths, then total destructive 

interference occurs 

2d-D = 
f 

2 
(Eq. 6-2) 

where n is a positive integer and the wavelength of sound, X = 8.575 

millimeters. 

Robot / 

/ 

/ 

/ 

/ 

Figure 29 
Muftipath Interference Problem 

Countering the multipath interference effect requires varying either the 

height, the beam width or the wavelength. The operating frequency fixes the 

wavelength so beam width and height are the only variables.   The sensor height 

is given by 
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h = dsind (Eq. 6-3) 

Combining Equations 6-2 and 6-3 means that total destructive interference will 

occur if 

( \ 

2h 
<9>sin -i 

(    0 
V     2) 

A + D 
(Eq. 6-4) 

At a height of 36.5 centimeters and distance of 4.214 meters, total destructive 

interference will occur is 9> 9.96°.   For a distance of 2 meters, a sensor at this 

same height will experience total destructive interference if 6> 21.35°. 

However, the thresholding caused by the Schmitt Trigger means that 0 is a 

function of reflected signal strength and difficult to predict. This makes it 

virtually impossible to calculate the optimum height to avoid total destructive 

interference within the operating range of Yamabico-11; however, one can 

restrict the vertical beam width to reduce the reflected amplitude. 

C. ROTATIONAL SCAN ANGLE MEASUREMENTS 

A rotational scan experiment, similar to that conducted in the anechoic 

chamber, verified the detection capabilities of both the bare sonar pair, Sonar 0, 

and the coned sonar pair, Sonar 3, using MML 11 with the SPARC4 

microprocessor. The rotational scan took place at approximately 73.5, 123.5, 

173.5 and 223.5 centimeters from a continuous wall on the 5th deck of Spanagel 

Hall at the Naval Postgraduate School. Fortunately, multipath interference was 

not a problem at these distances. Instead of recording raw range data as in the 

previous experiment, the experiment recorded the global x-y coordinates of each 

data point. If no sonar return occurred in the allotted time period, the raw range 

was set to infinity, defined for Yamabico-11 as 1.0 x 106; if the range was 

infinity, the global coordinate did not print to the data file.   Figures 30 and 31 

plot these global data points. 
At longer distances, the global coordinates of the return are more spread 

out due to the time required for sound to travel to and from the wall. Although 

the bare sonar pair produced smooth data, the coned sonar pair gave 
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inconsistent returns due to the narrowness of the beam and the presence of side 

lobes.   The absence of returns occurred where the beam pattern of the coned 

sonar pair had a node. In both cases, at large angles, the sonars measured a 

shorter distance because the side of the beam generated the return vice the 

center of the beam. Since the global coordinate calculation assumed that the 

return occurred on beam centerline, the plots in Figures 30 and 31 curve at the 

edges. 
Before this work began, others had observed that Yamabico-11 could not 

receive returns unless almost perpendicular to an object. At the time of these 

observations, Yamabico-11 had the sonar configuration of Figure 1 and used a 5 

Volt supply voltage. Based on the beam patterns produced in the anechoic 

chamber, the original hypothesis made claimed that the cones caused this 

limitation.   However, Figures 30 and 31 show virtually no difference between the 

measured angular response of the coned and bare sonar pairs using a supply 

voltage of 12 Volts. Previously, the amplitude of the returns generated by the 
side lobes using th© 5 Volt supply were insufficient to trigger the Schmitt Trigger. 

With the increase in supply voltage, the side lobes are able to fire the Schmitt 

Trigger, giving a similar angular response as the bare sonar pair, disproving the 

original hypothesis. 
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Figure 30 
Rotational Scan of Wall by Bare Sonar Pair on Yamabico-11 
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Rotational Scan of Wall by Coned Sonar Pair 
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Figure 31 
Rotational Scan of Wall by Coned Sonar Pair on Yamabico-11 

D. OBSTACLE AVOIDANCE 

The Yamabico-11 research group had demonstrated successfully various 

methods for obstacle avoidance using only ultrasonic sensor information. In the 

past, if the user programmed Yamabico-11 to move forward until it detected an 

object, there were two basic motions the user could use to avoid the object. The 

user, knowing both the location and size of the object, could calculate the 

obstacle avoidance path and program Yamabico-11 to maneuver around the 

obstacle using the pre-determined avoidance path. The user had to calculate 

the pre-determined avoidance path for each object encountered. Alternatively, 

the user could program Yamabico-11 to turn right or left and perform a wall- 

hugging motion to maneuver around an object. 
Although both of these methods have been demonstrated, they each have 

drawbacks. In the first case, the user had to determine the proper avoidance 

path for each object. If a new object was added, or the starting configuration 

changed, the avoidance paths had to be recalculated and reprogrammed. In the 

second case, a simple wall-hugging heuristic in which Yamabico-11 turned right 
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when it detected an object could cause Yamabico-11 to take the long path 

around an object as Figure 32 demonstrates.   Combining these approaches will 

give Yamabico-11 the ability to determine its own intelligent obstacle avoidance 

path, bringing it one step closer to being truly autonomous. 

Avoid Path 2 

J3rigtaL£ato_ ■o > 

AvoW Path 1 

Figure 32. Two Obstacle Avoidance Paths 

In order to determine its obstacle avoidance path, Yamabico-11 needs 

information about the size and location of the obstacle. With this information, it 

can decided the best path for avoiding the object intelligently given its a priori 

knowledge of the world and its desired path. Figure 33 shows a generic 

Figure 33. Geometry of the Obstacle Avoidance Problem 
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obstacle avoidance situation for a convex polygonal object. This method uses 

an avoidance path that is parallel to the original path to minimize robot 

movements. If the object is known, then the coordinates of the vertices A and B 

are known and intelligent obstacle avoidance is implemented easily.   As can be 

seen in Figure 33, the obstacle has been grown by a safety factor. The signed 

distances d1 and d2 are calculated by the formula 

d--(xt -xc)sin 6+ (y-yc)cos9+r (Eq. 6-5) 

where the subscript / represents Point A or B, the subscript c stands for the 

robot's center position, and r is the safety margin. A positive d means the point 

is to the left of the robot; a negative signed distance places the point to the 

robot's right. 

To calculate the avoidance path, the magnitudes of d1 and 62 are 

compared. Ideally, the robot should maneuver to the short side to avoid the 

object. Knowing the appropriate signed distance d, the avoidance path 

configuration is defined by 

((x,y),0,K) 

where 

* = *<-d™e (Eq.6-6) 
y = yc+d cosO 

where the orientation, 8, is that of the original path and curvature, K, is zero, 

defining a straight line. 
If the obstacle detected does not correspond to any known object, then 

other means are needed to get the required information. Although Yamabico- 

11's current sonar system can easily detect the presence of an object, it is not 

suitable for determining the object size quickly.   Using only its sonar system, 

Yamabico-11 would have to physically move, testing for the object, in order to 

determine the outer boundaries of the object. This movement is time consuming 

and inefficient.  A better method for localizing an object requires the use of a 

sensor which can detect the width of an object. 
One solution is to use a visual system which has the ability to determine 

the projection of an object onto a vertical plane. Given the range and the global 

x - y coordinates of an object, a visual system could determine the widths, d1 
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and d2, in Figure 33, assigning a negative width to d2. Combining this 

information with knowledge of the robot's environment map and desired path 

allows calculation of a safe and appropriate path to avoid the obstacle using 

Equation 6-6. 
Determining when the robot is past the object and can transition safely 

back to the original path is difficult. By using a side facing sonar, the robot can 

ensonify the object, checking for a distance greater than the magnitude of the 

signed distance d. A problem arises if the sonar is enabled before the robot has 

maneuvered abreast of the object. The time required for the robot to maneuver 

to the avoidance path is a factor of both the magnitude of the signed distance 

and the robot's speed. 
The robot will be abreast the initial detection point of the obstacle when 

xc = xa+dcos0 (Eq>6_7) 

yc= ya+d sin 0 

where xc and yc are the global coordinates of the robot at any instant in time, 

xa and ya are the global coordinates of the avoidance path defining point, d is 

the detection distance, and 0 is the orientation of the original path. Once the 

robot has reached this point, it can enable the side-facing sonar safely. 

Figures 34 and 34 show the path followed by Yamabico-11 in 

maneuvering around an object. In Figure 34, the (x,y) object boundaries given 

to Yamabico-11 were (150.0,105.0) and (150.0, 25.0). The initial path started at 

the origin at an orientation of 30° and with zero curvature. Yamabico-11 

correctly calculated an avoidance path to the left of the object and returned to 

the original path once past the object. In Figure 35, the coordinates were 

(150.0,175.0) and (150.0,55.0) and the initial path was the same. This time, 

Yamabico-11 decided to maneuver to the right to avoid the object. 
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Figure 34 
Dynamic Obstacle Avoidance to the Left 
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Figure 35 
Dynamic Obstacle Avoidance to the Right 
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VII. NEW SONAR DESIGN 

A. JUSTIFICATION 

The results of the experiments in the anechoic chamber and on 

Yamabico-11 show the necessity of re-configuring the sonar system on 

Yamabico-11 to provide consistent sonar returns and to provide full 360° 

coverage throughout its operating range. Simply removing the cones from the 

sonar pairs will allow consistent sonar returns. Repositioning the twelve sonar 

pairs evenly around the periphery of the robot at 30° increments will provide the 

most comprehensive coverage.   Overlapping the sonar coverage provides an 

added benefit in that returns from neighboring sonar pairs can be compared to 

give a gross estimate of obstacle orientation. 

B. DESIGN 

1. Hardware System Modifications 

The sonar suite was modified as follows: 

a. Removed cones from all sonar pairs. 

b. Moved Sonars 0, 2, 5 and 7 to centerline front, back, left and 

right, respectively. 
c. Moved Sonars 3,1, 4, 6 to the right of Sonars 0, 2, 5 and 7, 

respectively, at a 30° angle clockwise from the centerline sonar pair on each 

side. 
d. Moved Sonars 11,10, 8 and 9 to the left of Sonars 0, 2, 5 and 

7, respectively, at a 30° angle counter-clockwise from the centerline sonar pair 

on each side. 

Figure 36 shows the new locations of the sonars. This new system 

configuration gives Yamabico-11 full 360° sonar coverage with consistent sonar 

returns. 
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Figure 36 
New Sonar Pair Locations 

2. Software System Modifications 

The file "sonar.c" in MML 11, contains the sonar table with the sonar 

location information. This table reflects the new sonar positions in Figure 36. 

New mnemonics, based on relative position of each sonar, describe the sonars 

in MML 11.   Table 3 lists each sonar pair, its mnemonic and its group. 
A new function called "ScanSonar (int, double)" created in MML 11 allows 

the user to scan for obstacles in one of four directions: forward, backward, left or 

right. This function automatically pings the appropriate sonar pairs in the 

direction specified, giving the user the global x-y coordinates of the first obstacle 

detected within the user-specified range. Another function called 

"avoidPathVertex (double, POINT)" gives Yamabico-11 the ability to determine 

dynamically an avoidance path based on the vertices of a convex polygons as 
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described in Chapter VI while "avoidPathWidth(double, POINT)" gives a 

dynamic avoidance path based on the width of an object relative to the robot's 

orientation.   The vertices and/or widths are provided by the dummy functions 

"getBoundaries(POINT)" and "getWidth(POINT,int)"; although these functions 

return values, the values must be inputted manually by the user. However, the 

structure exists for future implementation of these functions. 

Additionally, modifications to the variable naming convention in the sonar 

table located "sonar.c" make it more readable. The sonar positional information 

is now named "sonartable[n].SonarPosit.X", "sonartable[n].SonarPosit.Y" and 

"sonartable[n].Theta" where n stands for the sonar number.   Modifications to the 

files "sonar.h" and "sonarmath.c" ensured the consistency of these changes. 

Mnemonic Sonar Group 

sooo 0 0 

S030 3 1 

S060 10 2 
S090 7 0 
S120 6 1 

S150 9 2 

S180 2 0 

S210 1 1 

S240 8 2 

S270 5 0 

S300 4 1 

S330 11 2 

Table 3 
New Sonar Mnemonics 
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VIII. CONCLUSIONS AND RECOMMENDATIONS 

A. BEAM WIDTH 

This work investigated the sonar hardware on Yamabico-11, including its 

characteristics and limitations, and will serve as a major reference for further 

improvements to the sonar system, increasing supply voltage to the sonar driver 

boards from 5 volts to 12 volts caused the effective beam width to increase 

because the side lobes now provided usable returns. However, the data was 

inconsistent due to the nodes in the beam pattern. Removing the cones 

eliminated the side lobes, providing consistent range data. The effective beam 

width without the cones is about the same as it was with the cones. The wider 

beam width produced by the increased supply voltage has the negative effect of 

introducing multipath interference. The wider beam width improves the sonar 

system coverage, but signal cancellation reduces the range of the sonar system. 

The range can be increased by increasing the height of the sensors, but this 

also increases the minimum detection distance of objects near the floor. Using a 

height of about 36.5 centimeters for the sensors, consistent range data is 

achievable out to a range of over 2 meters. Over this range, the data return is 

intermittent due to the cancellation affects of multipath interference.   An even 

re-distribution of the twelve sonar pairs around the periphery ensures that 

Yamabico-11 has 360° sonar coverage. With twelve evenly spaced sonars, full 

coverage can be achieved with a minimum full beam width of 30°. A smaller 

beam width will reduce the multipath interference effects. This smaller beam 

width can be achieved by placing the sensors in a properly shaped horn. 

Investigation of the proper shape for the horn is left for future work. 

B. SIGNAL PROCESSING 

The current signal processing, which uses a threshold to determine 

detection of a return signal, limits the ability of Yamabico-11 to calculate sonar 

ranges accurately. The current threshold, set at 1.4 Volts, may or may not be 

reached by the time the return signal hits its maximum at 0.5 milliseconds after 

the return signal first reaches the receiver. Therefore, thresholding causes a 
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dynamic error of up to ± 8.6 centimeters. To remove dynamic error, the signal 

processing must change. Since the occurrence of the return signal's peak is 

predictable and constant, it could be used to stop the clock counter, thereby 

ensuring that the clock counter stops at the same point for each pulse 

regardless of distance to, or material composition of, an object. New signal 

processing could use either analog or digital circuits to remove the dynamic 

error. A recommended solution could use a circuit which detects a change in the 

sign of the return signal's slope. Also, if this circuit maintains the voltage 

amplitude of the return signal's peak, Yamabico-11 could perform even more 

sophisticated signal processing, using signal strengths from different sonar pairs 

to localize an object. Further investigation of these and other signal processing 

techniques will greatly enhance the sonar system on Yamabico-11 and allow 

Yamabico-11 to move more precisely within its world. 

Although much smaller, the system has static errors caused by hardware 

timing constraints. Once the dynamic error is removed, th© clock-distance 

conversion algorithm can be modified to account for the static offsets. Ideally, 

this would allow the accuracy of the sonar ranges to be within one clock tick or ± 

0.1029 centimeters. 
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APPENDIX A. 
DATA FROM ANECHOIC CHAMBER EXPERIMENTS 

This appendix contains the analog graphs recorded by the HP 7090A 

Plotter during the anechoic chamber experiments discussed. In each case, the 

rotator speed was 1 rpm. The direction of rotation varied for each experiment. 

Each graph has the x-axis divided into 10° increments. The peak voltage occurs 

at 0°. This series of experiments compares the beam widths determined by the 

x-axis. The y-axis scale varies among the graphs, but no comparison of voltage 

is made among the graphs. The voltage is only a factor in determining the half- 

amplitude point. 
Graph A corresponds to Experiment 1 in Chapter V. This data was 

collected on April 24, 1994. The bare Nicera transmitter was rotated while the 

bare receiver was held steady at a distance of about 199.3 centimeters. 

Graph B corresponds to Experiment 2 in Chapter V. This data was 

collected on April 24,1994. The transmitter with small cone was rotated while a 

bare receiver was held steady at a distance of about 198.0 centimeters. 

Graph C corresponds to Experiment 3 in Chapter V. This data was 

collected on May 20,1994. The receiver with large cone was rotated while ä 

bare transmitter was held steady at a distance of about 200.0 centimeters. 

Graphs D, E and F support to Experiment 4 in Chapter V. The data was 

collected by rotating a coned sonar pair with a wall located at a distance of 

about 76 centimeters. For Graph D, produced on April 7,1994, the coned sonar 

pair was mounted horizontally with the transmitter t the left of the receiver. 

Graph E and F, produced on April 13,1994, mounted the coned sonar pair 

vertically. In Graph E, the receiver was above the transmitter and in Graph F, 

the receiver and transmitter were reversed. The beam pattern produced in all 

three graphs was the same. 

Graphs G, H, and I support Experiment 5 in Chapter V and were produced 

on April 13,1994.   In this series, a bare sonar pair was rotated about 80 

centimeters from the wall. In Graph G, the bare sonar pair was mounted 

vertically with the receiver above the transmitter. In Graphs H and I, the bare 

sonar pair was mounted horizontally with the transmitter to the left of the 

receiver. In Graph H, the bare sonar pair was rotated counter-clockwise and 
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rotated clockwise in Graph I. In all three cases, a similar beam pattern was 

produced. 
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APPENDIX B.   USER PROGRAMS 

This appendix contains the user programs written to perform testing on 
Yamabico-11. Each file contains an explanation in the heading and indicates 
the MML version. User files written in MML 10 and MML 11 differ greatly. 
Comments within each user file explain the logic. 
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;***********•***************************************** 

* 

* User File:   DistTest 
* Description: Tests distance accuracy of sonar 
* MML Version: MML 10 
* Author:     Jane Lochner 
* Date:        15 JUL 94 
* Notes:      Change #define statement to reflect 
* sonar number or mnemonic of sonar 
* under investigation.  Once program 
* is run, be sure to rename the data 
* file "RAW" on the host before 
* running the program again. 
Tu»-***************************************************/ 

#include "mml.h" 

#define SONAR 3 
#define FILETYPE 0 
#define FILENUMBER 0 

UserO 
{ 
long int i; 
void initialize(); 
void cleanup(); 

initialize(); 

motor_on=OFF; 

do 
(i++; 
sonar(SONAR);} 

while (i<50000); 

cleanup(); 

/*  Gives 21 readings */ 

void initialize() 
{ 

} 

/* sets up data logging   */ 

enable_sonar(SONAR); 
set_log_interval(SONAR,1); 
enable_data_logging(SONAR,FILETYPE,FILENUMBER); 

void cleanup() /* transfers data to host  */ 
{ 
disable_sonar(SONAR); 
disable_data_logging(SONAR,FILETYPE); 
xfer_raw_to_host(FILENUMBER,"RAW"); 
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* User Pile:  ContSonar 
* Description: Continuously pings given sonar 
* MML Version: MML 11 
* Author:     Jane Lochner 
* Date:        6 OCT 94 
* Notes:      Change #define statement to reflect 
* sonar number or mnemonic of sonar 
* under investigation. Program must 
* be stopped using the manual interrupt 
* switch on Yamabico-11. 

#include "user.h" 

#define SONARUSED 0 

void 
user() 
{ 
EnableSonar(SONARUSED); 

do 
{ 
Sonar(SONARUSED); 
} 

while (TRUE); 
DisableSonar(SONARUSED); 

} 
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/******************•********************************** 

* 

* User File: Scan 
* Description: Tests sonar scanning function 
* MML Version: MML 11 
* Author: Jane Lochner 
* Date: 15 OCT 94 
* Notes: Prints out to the screen the 
* Global X-Y Coordinates of object 
* detected. 

#include "user.h" 

void 
user() 
{ 

POINT obstacle; 

obstacle = ScanSonar(FORWARD,150.0); 
printf("X coord is:  %f\nY coord is:  %f\n\n",obstacle.X,obstacle.Y); 
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/ ***************************************************** 

* User File:   RotScanWall 
* Description: Records the Global X-Y Coordinates 
* of objects detected. 
* MML Version: MML 11 
* Author:      Jane Lochner 
* Date:        7 OCT 94 
* Notes:      Change #define statement to reflect 
* sonar number or mnemonic of sonar 
* under investigation. Used to determine 
* the angular response of a given sonar 
* by facing the sonar down the hallway, 
* then rotating 180 degrees.  Infinite 
* returns can be deleted from the data 
* file and results plotted. 
*****************************************************/ 

#include "user.h" 

#define SONARUSED 3 
#define USERBUFSIZE 0 
#define FREQ 1 
#define MODE SONAR_GLOBAL 

void 
user() 
{ 
CONFIGURATION Start,Current; 
POINT obstacle; 

EnableSonar(SONARUSED); 
SonarLog(FREQ,USERBUFSIZE,SONARUSED,MODE); 

Start = defineConfig(0.0,0.0,0.0,0.0); 
setRobotConfiglmm(Start); 
setRotVelImm(5.0); 

Current = getRobotConfig(); 
Rotate(PI); 

waitSec(lO); 

) 
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/ r**************** ************************************ 

* User File: SonarTest 
* Description: Gives distance from sonar face to 
* object in centimeters 
* MML Version: MML 11 
* Author: Jane Lochner 
* Date: 15 SEP 94 
* Notes: Change #define statement to reflect 
* sonar number or mnemonic of sonar 
* under investigation. 
*****************************************************/ 

#include "user.h" 

#define SONARUSED 3 
#define USERBUFSIZE 0 
ttdefine FREQ 5 
#define MODE SONAR_RAW 

void 
user() 
C  . 

long int i; 
EnableSonar(SONARUSED); 
SonarLog(FREQ,USERBUFSIZE,SONARUSED,MODE) 

do 
{ 
LogSonarData(SONARUSED); 
i++;) 

while (i<50); 
/* Gives 7 distance readings */ 

DisableSonar(SONARUSED); 
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/ ******+•********+*****+*****•*•*■************+*****+** 

* User File:   demo 
* Description: Robot moves until 1 meter from 
* an object then executes a 13 5 degree turn. 
* Robot will repeat this maneuver until 
* the manual interrupt button is pushed. 
* MML Version: MML 11 
* Author:     Jane Lochner 
* Date:        29 SEP 94 
* Notes:      Change #define statement to reflect 
* sonar number or mnemonic of sonar 
* under investigation. 

#include "user.h" 

#define SONARUSED 0 

void 
user() 
{ 

int GOING = 1; 
double hit; 
CONFIGURATION Start, JustGo, CurrentPosit, Jump, NewPosit; 

Start = defineConfig(0.0, 0.0, 0.0, 0.0); 
JustGo = defineConfig(0.0, 0.1, 0.0, 0.0); 
Jump = defineConfig(0.0, 45.0,-1.5*HPI, 0.0); 

EnableSonar(SONARUSED); 

setLinVelImm(15.0); 

setRobotConfigImm(Start) ,- 

hit = 9999.9; 

line(JustGo); 

do{ 
while(hit >=100.0 || hit <= 1.0) 

{ 
hit = Sonar(SONARUSED); 
printf("\n Range is:  %f ",hit); 

} 

CurrentPosit = getRobotConfigO; 
NewPosit = compose(&CurrentPosit,&Jump); 

setRobotConfiglmm(NewPosit); 

hit = 9999.9; 

printf("\n\nNew Sonar Range is %f\n",hit); 
waitSec(2); 

}while(GOING); 
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/ r**************************************************** 

* User File: avoidPathVertex 
* Description: Tests ability of Yamabico to determine 
* obstacle avoidance path autonomously. 
* MML Version: MML 11 
* Author: Jane Lochner 
* Date: 26 NOV 94 
* Notes: Change #define statements to reflect 
* sonar number or mnemonic of sonar 
* under investigation, safety factor, and 
* obstacle notification distance 
*****************************************************/ 

#include "user.h" 

#define SONARUSED 0 
#define USERBUFSIZE 0 
#define FREQ 10 
#define MODE SONAR_RAW 
#define SAFETY 20.0 
#define DISTANCE 150.0 
»define DIRECTION FORWARD 

void 
user() 
{ 
double width,hit,distance; 
CONFIGURATION Start,JustGo,Avoid,vehicle; 
POINT obstacle; 
int sonar; 

Start = defineConfig(0.0,0.1,PI/6,0.0) ; 
JustGo = defineConfig(0.0,0.0,PI/6,0.0); 

MotionLog(NULL,25,0); 

EnableSonar(SONARUSED); 

setRobotConfig(Start); 
setLinVelImm(15.0); 

line(JustGo); 

obstacle = ScanSonar(DIRECTION,DISTANCE); 

vehicle = getRobotConfig(); 

Avoid = avoidPathVertex(SAFETY,obstacle); 

width = -(Avoid.Posit.X-vehicle.Posit.X)*sin(vehicle.Theta)+ 
(Avoid.Posit.Y-vehicle.Posit.Y)*cos(vehicle.Theta); 

if (width < 0) 
{ 

width = width - SAFETY; 
sonar = S27 0; 
distance = -width; 

} 
else 

{ 
width = width + SAFETY; 
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sonar = S09 0; 
distance = width; 

} 
line(Avoid); 

while 
((vehicle.Posit.X <(Avoid.Posit.X+DISTANCE*cos(JustGo.Theta))) 

I I 
(vehicle.Posit.Y < (Avoid.Posit.Y+DISTANCE*sin(JustGo.Theta)))) 

{ 
vehicle = getRobotConfig(); 
waitMS(500); 

} 

EnableSonar(sonar); 
hit = Sonar(sonar); 
waitMS(30); 
while(hit <= distance) 

{ 
hit = Sonar(sonar); 

printf("Distance = %f\n",hit); 
waitMS(3 0); 

} 

line(JustGo); 
waitSec(20); 
stopImm(); 

) 
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APPENDIX C.   MML11 LIBRARY FILES 

This appendix contains the MML11 files which contain changes 
resulting from this work. The heading of each new function explains the inputs 
and outputs of the functions and describes the function's use. 

85 



* File:      sonar.h 
* Comments:  12-07-94 Updated for new sonar naming 
* convention by Jane Lochner. 
vT****************************************************/ 

#ifndef  SONAR_H 
#define  S0NAR_H 

#include "constants.h" 
#include "definitions.h" 

#define NUM_SONARS 16 

/* Sonar locations */ 
#define SOOO 0 
#define S030 3 
#define S330 11 
#define S090 7 
#define S060 10 
#define S120 6 
#define S180 2 
#define S150 9 
#define S210 1 
#define S270 5 
#define S240 8 
#define S300 4 

/* Types of sonar logging */ 
#define SONAR. .NONE 0x00 
#define SONAR. .RAW 0x01 
#define SONAR_ .GLOBAL 0x02 
#define SONAR. .SEGMENT 0x04 
#define SONAR. .ALL 0x07 

#define SONAR_CTL 0xfc0083f9 

typedef struct  { 
int     fitting, 

globalCoord, 
update; 

/*flag to indicate linear fitting request       */ 
/*flag to indicate coordinate conversion request */ 

/*flag to indicate presence of new data */ 

double  d,      /* range data */ 
t,      /* robot's, orientation angle at time of range */ 
SonarTheta;   /* angle of sonar from robot center */ 

POINT posit;   /* robot's position at time of range (x, y) */ 
POINT global;  /* global position of sonar return (gx, gy) */ 
POINT SonarPosit;  /* position of sonar from center (rob_x, rob_y) */ 

}  SONARD; 

/* defines a basic segment with the start and end points, and the sonar 
it is associated with */ 

typedef struct  { 
POINT   start; 
POINT    end; 
double  alpha,   /* angle and length of normal from origin  */ 

r;      /* to the segment */ 
int     sonarNumber; 

}  SEGMENT; 
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typedef struct  { 
/* (headx, heady, tailx, taily, sonar, alpha, r) */ 

SEGMENT  seg; 
/* length of the segment */ 

double   length; 
}  LINE_SEG; 

typedef struct  {    /* revised by Y. Kanayama, 07-07-93      */ 
double  mOO,  /* moments */ 

mlO, 
mOl, 
m20, 
mil, 
m02; 

SEGMENT seg; /* (startx, starty, endx, endy, n, alpha, r) */ 
}  CUR_DATA; 

/***  Global variables  ***/ 
extern  int     service_flag; 
extern  SONARD  sonar_table[]; 

/***  Prototypes  ***/ 

void InitSonar(void); 

double        WaitSonar(int); 

/* Interrupt handler */ 
void SonarSysControl(void); 

/* So the user doesn't have to include all the 
sonar header files... */ 

#include "sonarcard.h" 
#include "sonarmath.h" 
#include "sonarlog.h* 

#endif 
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..fr********************************************************** 

* File:      sonarmath.h 
* Comments:  12-07-94 Update to support scanning function 
* and new functions related to 
* dynamic obstacle avoidance. 
* Update for sonar table changes of 
* rob_t to SonarTheta and 
* offset to SonarPosit 
*********************************************************** 

#ifndef  SONARMATH_H 
#define  SONARMATH_H 

#include "sonar.h" 

/* Types of Scanning -- Added by Jane Lochner */ 
#define FORWARD       0 
#define BACKWARD       1 
#define LEFT 2 
#define RIGHT 3 

/*  The following typedef was added to support the 
getBoundaries() function written as part of the 
thesis work of LCDR Lochner.  */ 

typedef struct { 
POINT left; 
POINT right; 

} BOUNDARY; 

void    InitSonarmath(void); 
void    SetSonarParameters(double, double); 

double  Sonar(int); 
POINT    Global(int); 
LINE_SEG *GetSegment(int); 
LINE_SEG *EndSegment(int); 

void    CalculateGlobal(int); 
void    GenerateSegment(int); 

void    EnableLinearFitting(int); 
void -  DisableLinearFitting(int); 
void    LinearFitting(int); 

/* The following prototypes were added to support 
the new functions added in sonar.c as part of 
the thesis work of LCDR Lochner  */ 

POINT ScanSonar(int,double); 
BOUNDARY getBoundaries(POINT); 
double getWidth(POINT,int); 
CONFIGURATION avoidPathVertex(double,POINT); 
CONFIGURATION avoidPathWidth(double,POINT); 

#endif 
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/I********************************************************** 

* Author 
* Date 
* File 
* Description 

Patrick Byrne , Yutaka Kanayama 
20 November 1993 
sonar.c 
Provides the global generic sonar functions 

* Comments: 
* - Fri  07-22-94 Updated for Sparc mmlll FEK 
* - updated by Khaled morsy 11-22-94 
* - Updated on 6 Dec 94 by Jane Lochner to add new 
* sonar positions and to rename offset to SonarPosit 
* and rob_t to SonarTheta in the sonar table. 
A**********************************************************, 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

"definitions.h" 
"memsys .h" 
"motion.h" 
"sonarcard.h" 
"sonarmath.h" 
"sonarlog.h" 
"system.h" 
"time.h" 
"sonar.h" 

/*** Global variables  ***/ 
int  service_flag ; 
SONARD  sonar_table[NUM_SONARS]; /*one of the above struct's for each sonar */ 

/* used by ServeSonar */ 
static const int group_array[4][4] = { 

{0, 5, 2,   7), 
{3, 4, 1, 6}, 
{10, 11, 8, 9}, 
{12, 13, 14, 15} 

}; /* array maps sonar numbers to groups */ 

void 
InitSonar(void) 
{ 

int i; 

/* .initialize sonar_table */ 
for (i = 0; i < NUM_SONARS; i++) 

memset(&sonar_table[i], 0, sizeof(SONARD)); 

/* set up compensation 
sonar_table[0].SonarTheta = 
sonar_table[1].SonarTheta = 
sonar_table[2 J.SonarTheta = 
sonar_table[3].SonarTheta = 
sonar_table[4].SonarTheta = 
sonar_table[5].SonarTheta = 
sonar_table[6].SonarTheta = 
sonar_table[7].SonarTheta = 
sonar_table[8].SonarTheta = 
sonar_table[9].SonarTheta = 
sonar_table[10].SonarTheta = 
sonar_table[ll].SonarTheta = 
sonar_table[12].SonarTheta s 
sonar_table[13].SonarTheta : 
sonar_table[14].SonarTheta : 
sonar_table[15].SonarTheta = 

for sonar posit 
0.0; 
5.0*PI/6.0; 
PI; 
-PI/6.0; 
PI/3.0; 
PI/2.0; 
-2.0*PI/3.0; 
-PI/2.0; 
2.0*PI/3.0; 
-5.0*PI/6.0; 

: -PI/3.0; 
: PI/6.0; 
! 0.0; 
: 1.5708; 
:  4.7124; 
: 0.0; 

ion * 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
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sonar 
sonar 
sonar 
sonar 
sonar 
sonar 
sonar 
sonar, 
sonar, 
sonar, 
sonar, 
sonar, 
sonar, 
sonar, 
sonar, 
sonar. 

sonar, 
sonar, 
sonar, 
sonar, 
sonar. 
sonar. 
sonar, 
sonar, 
sonar, 
sonar, 
sonar, 
sonar, 
sonar, 
sonar, 
sonar, 
sonar 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 

.table 
table 

0] .SonarPosit.X 
I] .SonarPosit.X 
2].SonarPosit.X 
3].SonarPosit.X 
4].SonarPosit.X 
5].SonarPosit.X 
6].SonarPosit.X 
7].SonarPosit.X 
8] .SonarPosit.X 
9].SonarPosit.X = ■ 
10] .SonarPosit.X = 
II] .SonarPosit.X = 
12] .SonarPosit.X = 
13] .SonarPosit.X = 
14].SonarPosit.X = 
15] .SonarPosit.X = 

23.6; 
-23.0; 
-22.6; 
24.7; 
13.4; 
0.0; 
-12.6; 
0.0; 
-13.4; 
-23.5; 

= 12.1; 
= 25.2; 
0.0; 
1.5708; 
4.7124; 
0.0; 

0].SonarPosit.Y 
1] .SonarPosit.Y 
2] .SonarPosit.Y 
3] .SonarPosit.Y 
4].SonarPosit.Y 
5] .SonarPosit.Y 
6] .SonarPosit.Y 
7] .SonarPosit.Y 
8].SonarPosit.Y 
9] .SonarPosit.Y 
10].SonarPosit.Y 
11].SonarPosit 
12].SonarPosit 
13].SonarPosit 
14].SonarPosit 
15] .SonarPosit 

: -0.5; 
= 13.1; 
= -1.0; 
= -14.6; 
= 21.3; 
= 20.6; 
= -21.3; 
= -20.5; 
: 21.3; 
= -14.9; 
= -21.3; 
= 14.1; 
= 0.0; 
= 21.5;. 
= 21.5; 
= 0.0; 

/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 

/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 
/**/ 

/* initialize the sonar components */ 
InitSonarmathO ; 
InitSonarlog(); 

SetSonarParameters(0.02, 5.0); 

* Procedure: wait_sonar(n) 
* Description:  waits in a loop until new data is available for 
* sonar n. 
*********************************************************************/ 

double 
WaitSonar(int n) 
{ 

sonar_table[n].update = 0; 
while (sonar_table[n].update == 0) 

/* NULL statement */ 
return sonar_table[n].d; 
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* Procedure: serve_sonar{x,y,t,ovf1,datal,data2,data3,data4,group) 
* Description:  this procedure is the "central command* for the 
* control of all sonar related functions. It is linked with the 
* ih_sonar routine and loads sonar data to the sonar_table from 
* there. It then examines the various control flags in the 
* sonar_table to determine which activities the user wishes to take 
* place, and calls the appropriate functions. This procedure is 
* invoked approximately every thirty milliseconds by an interrupt 
* from the sonar control board. 

void 
SonarSysControl(void) 
{ 

static int 
int 
int 
int 
int 

cnt = 0; 
n; 
i; 
data[4]; 
group; 

CONFIGURATION    current; 

/* overflow bit is bit 
#define OVERFLOWMASK 
#define GROUP_MASK 
#define SONAR_DATA0 
#define S0NAR_DATA1 
#define S0NAR_DATA2 
#define S0NAR_DATA3 

15 */ 
0x8000 
0x18 
0xfc0083f0 
0xfc0083f2 
0xfc0083f4 
0xfc0083f6 

/* blink the #1 LED */ 
if (++cnt > 10)  { 

cnt = 0; 
changeLEDstate(1);} 

current = getRobotConfig(); 

group = ((*(BYTE*)SONAR_CTL 
data[0] = *(WORD*)SONAR_DATA0 
data[l] = *(WORD*)SONAR_DATAl 
data[2] = *(WORD*)S0NAR_DATA2 
data[3] = *(WORD*)SONAR_DATA3 

& GROUPJMASK) » 3); 

for (i = 0; i < 4; i++)  { 
n = group_array[group][i]; 
sonar_table[n].posit.X = current.Posit.X; 
sonar_table[n].posit.Y = current.Posit.Y; 
sonar_table[n].t = current.Theta; 

/*  -1 was returned if there was no echo */ 
if (data[i] & OVERFLOWMASK) 

sonar_table[n].d = INFINITY; 

else 
{  /* only first 12 bits are data, so mask the data */ 

data[i] &= Oxfff; 
sonar_table[n].d = data[i] * 0.1029; } 

CalculateGlobal(n); 
if (sonar_table[n].fitting == 1) 

LinearFitting(n); 

/* log the data for this sonar */ 
LogSonarData(n); 
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/ ********************************************************** 

* Author 
* Date 
* File 
* Description 

Patrick Byrne 
20 November 1993 
sonarmath.c 
Provides the main sonar functions 

* Comments: 
* Fri  07-22-94 Updated for Sparc mmlll FEK 
* Wed  12-07-94  Five new functions added by 
* Jane Lochner to support scanning 
* and dynamic obstacle avoidance 
************************************************************, 

#include "definitions.h" 
#include "sonar.h" 
#include "stdiosys.h" 
#include "math.h" 
#include "motion.h" 
#include "memsys.h" 
#include "sonarlog.h" 
#include "sonarmath.h" 

#define QMAX   50 
#define SONARS 11 

/***  Local variables ***/ 
static double 

static LINE_SEG 
static int 
static int 
static int 

Cl, C2; 

Queue[SONARS][QMAX]; 
Head[SONARS]; 
Tail[SONARS]; 
Empty[SONARS]; 

static LINE_SEG  segstruct; /* temporary storage for get_segment func. '/ 

static int 
static int 

static LINE_SEG 
*/ 

static CUR_DATA 

SegListHead[NUM_SONARS]; 
SegListTail[NUM_SONARS]; 

seg_list[NUM_SONARS][5]; 

segment_data[NUM_SONARS]; 

/♦points to oldest segment array element  */ 
/♦points to newest segment array element  */ 

/♦segments for working memory 

/♦interim data for all sixteen sonars */ 

/*** Global variables  ***/ 

/*** Local Prototypes  ***/ 
void    Enqueue(int, LINE_SEG#); 
void    AddToSegment(int, POINT); 
void    ResetMoments(int); 
void     BuildList(LINE_SEG*, int); 

/**♦  Code  ♦♦♦/ 
void 
InitSonarmath(void) 
{ 

int  i ; 

for (i = 0; i < NUM.SONARS; i++) { 
ResetMoments(i); 
memset(&segment_data[i], 0, sizeof(CUR_DATA)); 

Empty[i] = TRUE; 
Head[i] = 1; 
Tail[i] = 1; 92 



* Procedure: set_sonar_parameters(cl,c2) 
* Description:  allows the user to 
* adjust constants which control the linear fitting algorithm. Cl is 
* a multiplier to allow more lenancy for greater sonar ranges. 
* C2 is an absolute value; both are used to determine if an 
* individual data point is usable for the algorithm.  Default values 
* are set in main.c to .02, 5.0 respectively. 
it*****************************************************************/ 

void 
SetSonarParameters(double cl, double c2) 
{ 

Cl = cl; 
C2 = c2; 

} 

* Procedure:  sonar(n) 
* Description:  returns the distance (in 
* centimeters) sensed by the n_th ultrasonic sensor.  If no echo is 
* received, then INFINITY(1.0e6) is returned.  If the distance is less than 10 
* cm, then a 0 is returned. 
♦•A******************-»**********************************************/ 

double 
Sonar(int n) 
{ 

return sonar_table[n].d; 
} 

/♦«•♦•♦•A************************************************************* 

* Procedure: global(n) 
* Description: returns a structure of type 
* posit containing the global x and y coordinates of the position of 
* the last sonar return, 
fr********************************************************************/ 
POINT 
Global(int n) 
{ 

return sonar_table[n].global; 
} 

void Enqueue() 
This function is called by generate_segment(). The 
sonar number and newest line_segment for that sonar 
are passed int. It simply places the latest segment 
produce by a sonar with linear_fitting and places it 
into a circular queue. 
*******************************************■******/ 

void 
Enqueue(int i, LINE_SEG *Seg) 
{ 

int        j ; 

if (Head[i]==Tail[i] && Empty[i] == FALSE) 
printf("Sonar segment queue is Full"); 

else { 
j = Tail[i]; 
Queue[i][j] = *Seg; 

Tail[i] = 1 + (Tail[i] % QMAX) ; 
Empty[i] = FALSE; 93 
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LINE_SEG get_segment(sonar) 
returns the pointer to the oldest completed unread 
segment of the sonar passed in. If there is no completed 
unread segment NULL is returned. 
******************•******•**************************/ 

LINE_SEG * 
GetSegment(int i) 
{ 

LINE_SEG    *Current_seg; 
int        j ; 

if (Empty[i]) 
Current_seg = NULL; 

else  { 
j = Head[i]; 
Current_seg = &Queue[i][j]; 
Head[i] = 1 + (Head[i] % QMAX); 
if (Head[i] == Tailfi]) 

Empty[i] = TRUE; 
}• 
return Current_seg; 

* Procedure: EndSegment(n) 
* Description: this procedure allocates 
* memory for the segment data structure, loads the correct values 
* into it and returns a pointer to the structure. 
*****************************************************************************/ 

LINE_SEG * 
EndSegment(int n) 
{ 

SEGMENT tmpSeg; 
LINE_SEG *seg_ptr; 
double length, delta; 

seglptr = &segstruct; 

tmpSeg = segment_data[n].seg; 
delta = tmpSeg.start.X * cos(tmpSeg.alpha) + 

tmpSeg.start.Y * sin(tmpSeg.alpha) - tmpSeg.r; 
tmpSeg.start.X -= delta * cos(tmpSeg.alpha); 
tmpSeg.start.Y -= delta * sin(tmpSeg.alpha); 
delta = tmpSeg.end.X * cos(tmpSeg.alpha) + 

tmpSeg.end.Y * sin(tmpSeg.alpha) - tmpSeg.r; 
tmpSeg.end.X -= delta * cos(tmpSeg.alpha); 
tmpSeg.end.Y -= delta * sin(tmpSeg.alpha); 
length = sqrt(SQR(tmpSeg.start.X - tmpSeg.end.X) + SQR(tmpSeg.start.Y - tmpSeg.end.Y)); 

seg_ptr->seg = tmpSeg; 
seg_ptr->length = length; 
seg_ptr->seg.sonarNumber = n; 

return seg_ptr; 
} 
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/•I****************************************************************** 

* Procedure: CalculateGlobal(n) 
* Description: this procedure 
* calculates the global x and y coordinates for the range value and 
* robot configuration in the sonar table. The results are stored in 
* the sonar table. 

********************** ****-),l,i,ir**************** ********************* / 

void 
CalculateGlobaKint n) 
{ 

double   lx, ly. It, range, SonarTheta, rob_x, rob_y; 
CONFIGURATION global; 

range = sonar_table[n].d; 
if (range >= INFINITYO)  { 

sonar_table[n].global.X = INFINITY; 
sonar_table[n].global.Y = INFINITY; 

} 
else { 

rob_x = sonar_table[n].SonarPosit.X; 
rob_y = sonar_table[n].SonarPosit.Y; 
SonarTheta = sonar_table[n].SonarTheta; t 

global = getRobotConfig(); 

/* vehicle compose sonar */ 
lx = global.Posit.X + (cos(global.Theta) * rob_x) - 

(rob_y * sin(global.Theta)); 
ly = global.Posit.Y + (sin(global.Theta) * rob_x) + 

(rob_y * cos(global.Theta)); 
It = SonarTheta + global.Theta; 

/* vehicle compose sonar range */ 
sonar_table[n].global.X = lx + (cos(lt) * range); 
sonar_table[n].global.Y = ly + (sin(lt) * range); 

} 
} 

* Procedure: add_to_segment(n, x, y)  * Description: this procedure 
* calculates new interim data for the line segment "and stores it in 
* segment_data[n]. It also changes the end point values to the point 
* being added. 
I»****************************************************************************/ 

void 
AddToSegment (in't n, POINT p) 
{ 

double   mOO, mlO, mOl, m20, mil, m02; 
double   alpha, r; 
double   mux, muy, mm20, mmll, mm02; 

mOO = segment_data[n].mOO += 1.0; 
mlO = segment_data[n].mlO += p.X; 
mOl = segment_data[n].mOl += p.Y; 
m20 = segment_data[n].m20 += SQR(p.X); 
mil = segment_data[n].mil += p.X * p.Y; 
m02 = segment_data[n].m02 += SQR(p.Y); 

if (mOO < 1.5) 
segment_data[n].seg.start = p; 

mux = mlO / mOO; 
muy = mOl / mOO; 
mm20 = m20 - SQR(mlO) / mOO; 
mmll = mil - mlO * mOl / mOO; Q 

mm02 = m02 - SQR(mOl) / mOO; 95 



if (mOO > 1.5)  C 
alpha = atan2(-2.0 * mmll, (mm02 - mm20)) / 2.0; 
r = mux * cos(alpha) + muy * sin(alpha); 

segment_data[n].seg.alpha = alpha; 
segment_data[n].seg.r = r; 
segment_data[n].seg.end = p; 

/*************•************************************************************** 

* Procedure: reset_moments(n); 
* Description: resets the accumulative 
* values in segment_data[n]  (m00,ml0,m01,m20,mll,m02) to zero. 
************************************************************************/ 

void 
ResetMoments(int n) 
C 

segment_data[n].mOO = 0.0 
segment_data[n].mlO = 0.0 
segment_data[n].m01 = 0.0 
segment_data[n].m20 = 0.0 
segment_data[n].mil = 0.0 
segment_data[n].m02 = 0.0 

} 

* Procedure: generate_segment(n) 
* Description: this function 
* completes segments at the end of a data run. Necessary because the 
* linear fitting function only terminates a segment based on the data 
* - it has no way of knowing that the user has stopped collecting data. 
*************************************************************************/ 

void 
GenerateSegment(int n) 
{ 

LINE_SEG      *seg_ptr; 

if (segment_data[n].m00 > 10.0)  { 
seg_ptr = EndSegment(n); 
BuildList(seg_ptr, n); 
Enqueue(n,seg_ptr); 

) 
ResetMoments(n); 

} 

* Procedure: EnableLinearFitting(n) 
* Description:  causes the background system to gather data points 
* from sonar n and form them into line segments as governed by 
* the linear fitting algorithm. 
***•***************************************************************/ 

void 
EnableLinearFitting(int n) 
( 

sonar_table[n].fitting = 1; 
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/* Procedure:  DisableLinearFitting(n) 
* Description:  causes background system to cease forming line 
* segments for sonar n. 

void 
DisableLinearFitting(int n) 
{ 

GenerateSegment(n); 
sonar_table[n].fitting = 0; 

/****************************■*************************************** 

* Procedure: LinearFitting(n) 
* Revised by Y. Kanayama,07-07-93 
* Description: this procedure controls the fitting of point 
* data to straight line segments. First it tests if the new coming 
* point is not far from the fitted line.  If the test is passed, the 
* point is added to test if the thinness test is passed.  If it is 
* passed, the addition is finalized. If any of the tests fail, 
* the line segment is ended and a new one started. The completed line 
* segment is stored in a data structure called segment, and segments 
* are linked together in a linked list. 

it******************************************************************/ 

void 
LinearFitting(int n) 
{ 

POINT p; 
double m00; 
double alpha, r, delta; 
double sonar_range; 
LINE_SEG *finished_segment; 

sonar_range = sonar_table[n].d; 
if (sonar_range < 9.3 II sonar_range > 409.0) { 

GenerateSegment(n); 
return; 

} 

p = sonar_table[n]^global;  /* temporary moments     */ 
mOO = segment_data[n].m00; 

if (mOO < 1.5)  { 
AddToSegment(n, p); 
return; 

} 

r = segment_data[n].seg.r; 
alpha = segment_data[n].seg.alpha; 
delta = fabs(r - p.X * cos(alpha) - p.Y * sin(alpha)); 

if (delta > MAXVAL(C2, Cl * sonar_range)) 
GenerateSegment(n); 

AddToSegment(n, p) ; 
return; 

} /* end linear_fitting */ 
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,+++************************************************************************** 

* Procedure: build_list(ptr, n) ; 
* Description: this function accepts 
* a pointer to a segment data structure and a sonar number, and 
* appends the segment structure to the tail of a linked list of 
* structures for that sonar. 

***************•*************************************************************/ 

void 
BuildList(LINE_SEG *ptr, int n) 
{ 

int next; 

if (SegListTail[n] == -1) 
SegListHead[n] = 0; 

next = (SegListTailfn] < 4) ? ++SegListTail[n] : 0; 

if (next == SegListHeadfn]) 
SegListHead[n] = (SegListHead[n] < 4) ? ++SegListHead[n] : 0; 

seg_list[n][next] = *ptr; 
LogSonarSegmentData(n, seg_list[n][next]); 

} 

/****•**************************************************************** 

* Procedure:   ScanSonar(int dir, double dist) 
* Description: Function allows user to scan in one of four 
* directions for obstacles.  Function will return 
* when it detects an obstacles within the specified 
* distance. Default is forward scan. 
* Inputs:     Scan Direction and detection distance 
* Outputs:    Global coordinates of obstacle 
* Date:        06 DEC 94 
* Author:      LCDR Jane Lochner 
*****+***************************************************************/ 

POINT 
ScanSonar(int dir,double dist) 
{ 
double hitl=9999.9,hit2=9999.9,hit3=9999.9; 
POINT obstacle; 
int sonar1,sonar2,sonar3; 

switch(dir)  { 
case FORWARD: 

•sonarl=S330 
sonar2=S000 
sonar3=S030 
break; 

case BACKWARD 
sonarl=S210 
sonar2=S180 
sonar3=S150 
break; 

case LEFT: 
sonarl=S300 
sonar2=S270 
sonar3=S240 
break; 

case RIGHT: 
sonarl=S060 
sonar2=S090 
sonar3=S120 

default: 
sonarl=S33 0 
sonar2=S000 
sonar3=S030,- qft 
break; 

} 



EnableSonar(sonarl); 
EnableSonar(sonar2); 
EnableSonar(sonar3); 
do   { 

waitMS(30); 
hitl=Sonar(sonarl); 
waitMS(30); 
hit2=Sonar(sonar2); 
waitMS(30); 
hit3 =Sonar(sonar3); 
} while ((hitl>dist II hitl<1.0) && 

(hit2>dist I I hit2<1.0) && 
(hit3>dist|| hit3<1.0)); 

if (hitl<dist) 
obstacle=Global(sonarl); 

if (hit2<dist) 
obstacle=Global(sonar2); 

if (hit3<dist) 
obstacle=Global(sonar3); 

DisableSonar(sonarl); 
DisableSonar(sonar2); 
DisableSonar(sonar3); 

return(obstacle); 
} 

* Procedure:   getBoundaries(POINT scan) 
* Description: Function returns the left and right 
* boundaries of an object. This is a 
* dummy function to be implemented at 
* a later date. The user just inputs 
* values to be returned. 
* Date:       06 DEC 94 
* Author:     LCDR Jane Lochner 
it************************************************************/ 

BOUNDARY 
getBoundaries(POINT scan) 
{ 
BOUNDARY obstacle; 

obstacle.left.Y = 105.0; 
obstacle.left.X = 150.0; 
obstacle.right.Y = 25.0; 
obstacle.right.X = 150.0; 

return(obstacle); 
) 
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* Procedure:  getWidth (POINT scan,int direction) 
* Description:  Function returns the width of object 
* on the designated side.  This is a 
* dummy function to be implemented at 
* a later date. The user just inputs 
* the values for testing purposes. 
* Date: 06 DEC 94 
* Author:      LCDR Jane Lochner 
•♦fr********************************************************/ 

double 
getWidth(POINT scan,int direction) 
( 
double width; 

if (direction == LEFT) 
width = 80 . 0; 

else 
width = -55.0; 

return (width); 
} 

* Procedure: avoidPathVertex(double safety, POINT scan) 
* Description:  Calculates path to avoid obstacle 
* using designated safety margin and the 
* outer vertices of the object 
* Inputs:  safety margin, global coordinates of closest 
* point 
* Outputs: New path to avoid obstacle 
* Date:    06 DEC 94 
* Author:  LCDR Jane Lochner 
***********************************************************/ 

CONFIGURATION 
avoidPathVertex(double safety, POINT scan) 
{ 
CONFIGURATION Current,avoid; 
POINT left,right; 
BOUNDARY obstacle; 
double LeftDist,RightDist; 

Current = getRobotConfig(); 
obstacle = getBoundaries(scan); 

LeftDist = -(obstacle.left.X-Current.Posit.X)*sin(Current.Theta)+ 
(obstacle.left.Y-Current.Posit.Y)*cos(Current.Theta)+safety; 

RightDist = -(obstacle.right.X-Current.Posit.X)*sin(Current.Theta)+ 
(obstacle.right.Y-Current.Posit.Y)*cos(Current.Theta)-safety; 

left.X = Current.Posit.X - LeftDist*sin(Current.Theta); 
left.Y = Current.Posit.Y + LeftDist*cos(Current.Theta); 
right.X = Current.Posit.X - RightDist*sin(Current.Theta); 
right.Y = Current.Posit.Y + RightDist*cos(Current.Theta); 

if (LeftDist > -RightDist)  { 
avoid.Posit.X = right.X; 
avoid.Posit.Y = right.Y;} 

else { 
avoid.Posit.X = left.X; 
avoid.Posit.Y = left.Y;} 

avoid.Theta = Current.Theta; 
avoid.Kappa = Current.Kappa; 
return(avoid); ,QQ 



* Procedure: avoidPathWidth(double safety, POINT scan) 
* Description:  Calculates path to avoid obstacle 
* using designated safety margin and the 
* left and right widths of the object 
* Inputs:  safety margin, global coordinates of closest 
* point 
* Outputs: New path to avoid obstacle 
* Date:    06 DEC 94 
* Author:  LCDR Jane Lochner 

CONFIGURATION 
avoidPathWidth(double safety, POINT scan) 
{ 
CONFIGURATION Current,avoid; 
POINT left,right; 
double LeftDist,RightDist; 

Current = getRobotConfig(); 
LeftDist = getWidth(scan,LEFT); 
RightDist = getWidth(scan,RIGHT); 

left.X = Current. Pos it. X - LeftDist*sin (Current .Theta) ,- 
left.Y = Current.Posit.Y + LeftDist*cos(Current.Theta); 
right.X = Current.Posit.X - RightDist*sin(Current.Theta); 
right.Y = Current.Posit.Y + RightDist*cos(Current.Theta); 

if (LeftDist > -RightDist) 
{ 
avoid.Posit.X = right.X; 
avoid.Posit.Y = right.Y; 

} 
else 

{ 
avoid.Posit.X = left.X; 
avoid.Posit.Y = left.Y; 

} 
avoid.Theta = Current.Theta; 
avoid.Kappa = Current.Kappa; 
return(avoid); 
) 
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